scholarly journals Special Issue: Advances in Computational Electromagnetics

2021 ◽  
Vol 7 (6) ◽  
pp. 89
Author(s):  
Valerio De Santis

Recent advances in computational electromagnetics (CEMs) have made the full characterization of complex magnetic materials possible, such as superconducting materials, composite or nanomaterials, rare-earth free permanent magnets, etc [...]

Inorganics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 56
Author(s):  
Francesca Garello ◽  
Roberto Nisticò ◽  
Federico Cesano

This Special Issue, consisting of four reviews and three research articles, presents some of the recent advances and future perspectives in the field of magnetic materials and systems, which are designed to meet some of our current challenges.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jimin Lee ◽  
Eun Jae Lee ◽  
Tae-Yeon Hwang ◽  
Jongryoul Kim ◽  
Yong-Ho Choa

Abstract Recent studies on next-generation permanent magnets have focused on filling in the gap between rare-earth magnets and rare-earth-free magnets, taking into account both the cost-effectiveness and magnetic performance of the magnetic materials. As an improved rare-earth-free magnet candidate, here, Ca-substituted M-type Sr-lean hexaferrite particles within a nano- to micro-scale regime, produced using an ultrasonic spray pyrolysis method, are investigated. Theoretically, the maximum coercivity (Hc) can be achieved in submicron Sr-ferrite crystals (i.e., 0.89 μm). The plate-like resultants showed a significant enhancement in Hc, up to a record high of 7880.4 Oe, with no deterioration in magnetization (M: 71–72 emu/g). This resulted in more favorable magnetic properties than those of the traditional Sr–La–Co ferrites. On the basis of microstructural analysis and fitting results based on the law of approach to saturation method, the Ca-substitution effects on the change in size and anisotropic characteristics of the ferrite particles, including pronounced lateral crystal growth and a strong increase in magnetocrystalline anisotropy, are clearly demonstrated. The cost-effective, submicron, and Ca-substituted Sr-ferrite is an excellent potential magnet and moreover may overcome the limitations of traditional hard magnetic materials.


2021 ◽  
Vol 1 (2) ◽  
pp. 112-123
Author(s):  
Grace Inman ◽  
◽  
Denis Prodius ◽  
Ikenna C. Nlebedim

<abstract> <p>The availability of REEs is limiting the successful deployment of some environmentally friendly and energy-efficient technologies. In 2019, the U.S. generated more than 15.25 billion pounds of e-waste. Only ~15% of it was handled, leaving ~13 billion pounds of e-waste as potential pollutants. Of the 15% collected, the lack of robust technology limited REE recovery for re-use. Key factors that drive the recycling of permanent magnets based on rare earth elements (REEs) and the results of our research on magnet recycling will be discussed, with emphasis on neodymium and samarium-based rare earth permanent magnets.</p> </abstract>


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
D.A. Karpukhin ◽  
◽  
A.O. Petrov ◽  
V.V. Koledov ◽  
D.A. Suslov ◽  
...  

Study and implementation of innovative systems of environmentally friendly and energy-efficient transport based on magnetic levitation, the principle of operation of which is based on the use of new solid-state magnetic materials based on compounds of rare earth materials, in particular materials with high-temperature superconductivity based on Y, permanent magnets based on Nd and Sm and magnetocaloric alloys based on Dy, Tb are of great interest throughout the world. In this work, the basic principles of magneto-levitation transport with the most economical principle of acceleration and deceleration - gravitational - are studied experimentally on mock-ups. The strength characteristics were measured: the levitation force and the lateral stabilization force, as well as losses during periodic translational motion of a cryostat with high-temperature superconducting elements made of ceramic material Y-Ba-Cu-O over the paths of permanent magnets made of the rare-earth compound Nd-Fe-B. A system for measuring the speed and compensation of losses for the implementation of continuous motion has been created and tested. The presented results indicate the possibility of scaling the layout project. It is concluded that the investigated scheme may be of practical interest for intracity and local transport communication with high comfort, environmental friendliness and record economy in the case of a successful solution of the problem of cooling HTSC elements to the temperature of the phase transition to the superconducting state, for example, using new principles of solid-state magnetic cooling based on compounds Dy-N, Tb-Ni, etc.


2018 ◽  
Vol 18 (2) ◽  
pp. 97-100 ◽  
Author(s):  
Martha Rianna ◽  
Timbangen Sembiring ◽  
Marhaposan Situmorang ◽  
Candra Kurniawan ◽  
Eko Arief Setiadi ◽  
...  

Iron sand is one of the natural resources in West Sumatra that has not been optimally utilized. One of the potential locations to get this iron sand deposits is the coast of Kata. This study aims to analyze the content and size of the iron grains found on the coast of Kata Padang Beach, West Sumatera Province. Coastal sand samples are extracted using permanent magnets to separate magnetic and non-magnetic materials. Characterization of iron sand using Scanning Electron Microscopy with Energy Dispersive X-ray (SEM-EDX) and Vibrating Sample Magnetometer (VSM). The result of characterization using SEM-EDX shows that iron sand samples contain Fe and O elements derived from Phase Magnetite (Fe3O4).  Keywords: iron sand, magnetic materials, SEM-EDX, VSM


JOM ◽  
2013 ◽  
Vol 65 (7) ◽  
pp. 862-869 ◽  
Author(s):  
A. Palasyuk ◽  
E. Blomberg ◽  
R. Prozorov ◽  
L. Yue ◽  
M. J. Kramer ◽  
...  
Keyword(s):  

Author(s):  
G. M. Micha ◽  
L. Zhang

RENi5 (RE: rare earth) based alloys have been extensively evaluated for use as an electrode material for nickel-metal hydride batteries. A variety of alloys have been developed from the prototype intermetallic compound LaNi5. The use of mischmetal as a source of rare earth combined with transition metal and Al substitutions for Ni has caused the evolution of the alloy from a binary compound to one containing eight or more elements. This study evaluated the microstructural features of a complex commercial RENi5 based alloy using scanning and transmission electron microscopy.The alloy was evaluated in the as-cast condition. Its chemistry in at. pct. determined by bulk techniques was 12.1 La, 3.2 Ce, 1.5 Pr, 4.9 Nd, 50.2 Ni, 10.4 Co, 5.3 Mn and 2.0 Al. The as-cast material was of low strength, very brittle and contained a multitude of internal cracks. TEM foils could only be prepared by first embedding pieces of the alloy in epoxy.


Author(s):  
Tian Lu ◽  
Qinxue Chen ◽  
Zeyu Liu

Although cyclo[18]carbon has been theoretically and experimentally investigated since long time ago, only very recently it was prepared and directly observed by means of STM/AFM in condensed phase (Kaiser et al., <i>Science</i>, <b>365</b>, 1299 (2019)). The unique ring structure and dual 18-center π delocalization feature bring a variety of unusual characteristics and properties to the cyclo[18]carbon, which are quite worth to be explored. In this work, we present an extremely comprehensive and detailed investigation on almost all aspects of the cyclo[18]carbon, including (1) Geometric characteristics (2) Bonding nature (3) Electron delocalization and aromaticity (4) Intermolecular interaction (5) Reactivity (6) Electronic excitation and UV/Vis spectrum (7) Molecular vibration and IR/Raman spectrum (8) Molecular dynamics (9) Response to external field (10) Electron ionization, affinity and accompanied process (11) Various molecular properties. We believe that our full characterization of the cyclo[18]carbon will greatly deepen researchers' understanding of this system, and thereby help them to utilize it in practice and design its various valuable derivatives.


Author(s):  
Tian Lu ◽  
Qinxue Chen ◽  
Zeyu Liu

Although cyclo[18]carbon has been theoretically and experimentally investigated since long time ago, only very recently it was prepared and directly observed by means of STM/AFM in condensed phase (Kaiser et al., <i>Science</i>, <b>365</b>, 1299 (2019)). The unique ring structure and dual 18-center π delocalization feature bring a variety of unusual characteristics and properties to the cyclo[18]carbon, which are quite worth to be explored. In this work, we present an extremely comprehensive and detailed investigation on almost all aspects of the cyclo[18]carbon, including (1) Geometric characteristics (2) Bonding nature (3) Electron delocalization and aromaticity (4) Intermolecular interaction (5) Reactivity (6) Electronic excitation and UV/Vis spectrum (7) Molecular vibration and IR/Raman spectrum (8) Molecular dynamics (9) Response to external field (10) Electron ionization, affinity and accompanied process (11) Various molecular properties. We believe that our full characterization of the cyclo[18]carbon will greatly deepen researchers' understanding of this system, and thereby help them to utilize it in practice and design its various valuable derivatives.


Sign in / Sign up

Export Citation Format

Share Document