scholarly journals Transverse shifts and time delays of spatiotemporal vortex pulses reflected and refracted at a planar interface

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Maxim Mazanov ◽  
Danica Sugic ◽  
Miguel A. Alonso ◽  
Franco Nori ◽  
Konstantin Y. Bliokh

Abstract Transverse (Hall-effect) and Goos–Hänchen shifts of light beams reflected/refracted at planar interfaces are important wave phenomena, which can be significantly modified and enhanced by the presence of intrinsic orbital angular momentum (OAM) in the beam. Recently, optical spatiotemporal vortex pulses (STVPs) carrying a purely transverse intrinsic OAM were predicted theoretically and generated experimentally. Here we consider the reflection and refraction of such pulses at a planar isotropic interface. We find theoretically and confirm numerically novel types of OAM-dependent transverse and longitudinal pulse shifts. Remarkably, the longitudinal shifts can be regarded as time delays, which appear, in contrast to the well-known Wigner time delay, without temporal dispersion of the reflection/refraction coefficients. Such time delays allow one to realize OAM-controlled slow (subluminal) and fast (superluminal) pulse propagation without medium dispersion. These results can have important implications in various problems involving scattering of localized vortex states carrying transverse OAM.

2011 ◽  
Vol 2011 ◽  
pp. 1-20 ◽  
Author(s):  
Chun-xia Dou ◽  
Zhi-sheng Duan ◽  
Xing-bei Jia ◽  
Xiao-gang Li ◽  
Jin-zhao Yang ◽  
...  

A delay-dependent robust fuzzy control approach is developed for a class of nonlinear uncertain interconnected time delay large systems in this paper. First, an equivalent T–S fuzzy model is extended in order to accurately represent nonlinear dynamics of the large system. Then, a decentralized state feedback robust controller is proposed to guarantee system stabilization with a prescribedH∞disturbance attenuation level. Furthermore, taking into account the time delays in large system, based on a less conservative delay-dependent Lyapunov function approach combining with linear matrix inequalities (LMI) technique, some sufficient conditions for the existence ofH∞robust controller are presented in terms of LMI dependent on the upper bound of time delays. The upper bound of time-delay and minimizedH∞performance index can be obtained by using convex optimization such that the system can be stabilized and for all time delays whose sizes are not larger than the bound. Finally, the effectiveness of the proposed controller is demonstrated through simulation example.


2019 ◽  
Vol 30 ◽  
pp. 03012
Author(s):  
Ilya Grin ◽  
Oleg Morozov

This paper considers methods for estimating the mutual time delay of broadband signals recorded by satellites based multi-position systems for determining the location of a radiation source. All methods considered are based on modified algorithms for calculating the ambiguity function. The presented algorithms are based on the extraction of narrowband channels from the studied signals and their further optimal processing. The reliability criterion for mutual time delay estimation by the presented methods was evaluated. Based on the results and analysis of computational efficiency, viability of methods considered and their modifications was determined.


1976 ◽  
Vol 19 (4) ◽  
pp. 749-766 ◽  
Author(s):  
Michael J.M. Raffin ◽  
David J. Lilly ◽  
Aaron R. Thornton

Time-intensity trade for selected spondaically stressed words was investigated using a centering method for interaural time delays of 0.00, 1.00, 2.00, 2.25, 2.50, and 2.75 msec at five levels of presentation: 0-, 25-, 40-, 55-, and 70-dB HL (ANSI, 1969). Lateralization effects increased with level of presentation, with a maximum lateralization effect of between 22 and 30 dB occuring with an interaural time delay of 2.25 msec. Multiple images were perceived by all subjects with an interaural time delay of 2.75 msec and by some subjects with an interaural time delay of 2.50 msec at high levels of presentation. No “ear effect” was observed for any of the listeners. A potential clinical application is discussed for this temporal speech-Stenger effect.


2005 ◽  
Vol 7 (8) ◽  
pp. 416-421 ◽  
Author(s):  
C N Alexeyev ◽  
M A Yavorsky
Keyword(s):  

2018 ◽  
Vol 617 ◽  
pp. A140 ◽  
Author(s):  
Olivier Wertz ◽  
Bastian Orthen ◽  
Peter Schneider

The central ambition of the modern time delay cosmography consists in determining the Hubble constant H0 with a competitive precision. However, the tension with H0 obtained from the Planck satellite for a spatially flat ΛCDM cosmology suggests that systematic errors may have been underestimated. The most critical of these errors probably comes from the degeneracy existing between lens models that was first formalized by the well-known mass-sheet transformation (MST). In this paper, we assess to what extent the source position transformation (SPT), a more general invariance transformation which contains the MST as a special case, may affect the time delays predicted by a model. To this aim, we have used pySPT, a new open-source python package fully dedicated to the SPT that we present in a companion paper. For axisymmetric lenses, we find that the time delay ratios between a model and its SPT-modified counterpart simply scale like the corresponding source position ratios, Δtˆ/Δt ≈ βˆ/β, regardless of the mass profile and the isotropic SPT. Similar behavior (almost) holds for nonaxisymmetric lenses in the double image regime and for opposite image pairs in the quadruple image regime. In the latter regime, we also confirm that the time delay ratios are not conserved. In addition to the MST effects, the SPT-modified time delays deviate in general no more than a few percent for particular image pairs, suggesting that its impact on time delay cosmography seems not be as crucial as initially suspected. We also reflected upon the relevance of the SPT validity criterion and present arguments suggesting that it should be reconsidered. Even though a new validity criterion would affect the time delays in a different way, we expect from numerical simulations that our conclusions will remain unchanged.


Sign in / Sign up

Export Citation Format

Share Document