scholarly journals Engineering gallium phosphide nanostructures for efficient nonlinear photonics and enhanced spectroscopies

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Gianni Q. Moretti ◽  
Emiliano Cortés ◽  
Stefan A. Maier ◽  
Andrea V. Bragas ◽  
Gustavo Grinblat

Abstract Optical resonances arising from quasi-bound states in the continuum (QBICs) have been recently identified in nanostructured dielectrics, showing ultrahigh quality factors accompanied by very large electromagnetic field enhancements. In this work, we design a periodic array of gallium phosphide (GaP) elliptical cylinders supporting, concurrently, three spectrally separated QBIC resonances with in-plane magnetic dipole, out-of-plane magnetic dipole, and electric quadrupole characters. We numerically explore this system for second-harmonic generation and degenerate four-wave mixing, demonstrating giant per unit cell conversion efficiencies of up to ∼ 2 W−1 and ∼ 60 W−2, respectively, when considering realistic introduced asymmetries in the metasurface, compatible with current fabrication limitations. We find that this configuration outperforms by up to more than four orders of magnitude the response of low-Q Mie or anapole resonances in individual GaP nanoantennas with engineered nonlinear mode-matching conditions. Benefiting from the straight-oriented electric field of one of the examined high-Q resonances, we further propose a novel nanocavity design for enhanced spectroscopies by slotting the meta-atoms of the periodic array. We discover that the optical cavity sustains high-intensity fields homogeneously distributed inside the slot, delivering its best performance when the elliptical cylinders are cut from end to end forming a gap, which represents a convenient model for experimental investigations. When placing an electric point dipole inside the added aperture, we find that the metasurface offers ultrahigh radiative enhancements, exceeding the previously reported slotted dielectric nanodisk at the anapole excitation by more than two orders of magnitude.

Science ◽  
2020 ◽  
Vol 367 (6475) ◽  
pp. 288-292 ◽  
Author(s):  
Kirill Koshelev ◽  
Sergey Kruk ◽  
Elizaveta Melik-Gaykazyan ◽  
Jae-Hyuck Choi ◽  
Andrey Bogdanov ◽  
...  

Subwavelength optical resonators made of high-index dielectric materials provide efficient ways to manipulate light at the nanoscale through mode interferences and enhancement of both electric and magnetic fields. Such Mie-resonant dielectric structures have low absorption, and their functionalities are limited predominantly by radiative losses. We implement a new physical mechanism for suppressing radiative losses of individual nanoscale resonators to engineer special modes with high quality factors: optical bound states in the continuum (BICs). We demonstrate that an individual subwavelength dielectric resonator hosting a BIC mode can boost nonlinear effects increasing second-harmonic generation efficiency. Our work suggests a route to use subwavelength high-index dielectric resonators for a strong enhancement of light–matter interactions with applications to nonlinear optics, nanoscale lasers, quantum photonics, and sensors.


Nanophotonics ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Zhanghua Han ◽  
Fei Ding ◽  
Yangjian Cai ◽  
Uriel Levy

AbstractThe recently emerging all-dielectric optical nanoantennas based on high-index semiconductors have proven to be an effective and low-loss alternative to metal-based plasmonic structures for light control and manipulations of light–matter interactions. Nonlinear optical effects have been widely investigated to employ the enhanced interactions between incident light and the dielectrics at the Mie-type resonances, and in particular magnetic dipole resonances, which are supported by the semiconductor. In this paper, we explore the novel phenomenon of bound states in the continuum supported by high-index semiconductor nanostructures. By carefully designing an array of nanodisk structures with an inner air slot as the defect, we show that a novel high quality-factor resonance achieved based on the concept of bound state in the continuum can be easily excited by the simplest linearly polarized plane wave at normal incidence. This resonance further enhances the interactions between light and semiconductors and boosts the nonlinear effects. Using AlGaAs as the nonlinear material, we demonstrate a significant increase in the second-harmonic generation efficiency, up to six orders of magnitude higher than that achieved by magnetic dipole resonances. In particular, a second-harmonic generation efficiency around 10% can be numerically achieved at a moderate incident pump intensity of 5 MW/cm2.


Nano Letters ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 8745-8751
Author(s):  
Aravind P. Anthur ◽  
Haizhong Zhang ◽  
Ramon Paniagua-Dominguez ◽  
Dmitry A. Kalashnikov ◽  
Son Tung Ha ◽  
...  

Nanophotonics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 3953-3963 ◽  
Author(s):  
Irina Volkovskaya ◽  
Lei Xu ◽  
Lujun Huang ◽  
Alexander I. Smirnov ◽  
Andrey E. Miroshnichenko ◽  
...  

AbstractWe put forward the multipolar model which captures the physics behind linear and nonlinear response driven by high-quality (high-Q) supercavity modes in subwavelength particles. We show that the formation of such trapped states associated with bound states in the continuum (quasi-BIC) can be understood through multipolar transformations of coupled leaky modes. The quasi-BIC state appears with increasing the order of the dominating multipole, where dipolar losses are completely suppressed. The efficient optical coupling to this state in the AlGaAs nanodisk is implemented via azimuthally polarized beam illumination matching its multipolar origin. We establish a one-to-one correspondence between the standard phenomenological non-Hermitian coupled-mode theory and multipolar models. The derived multipolar composition of the generated second-harmonic radiation from the AlGaAs nanodisk is then validated with full-wave numerical simulations. Back-action of the second-harmonic radiation onto the fundamental frequency is taken into account in the coupled nonlinear model with pump depletion. A hybrid metal-dielectric nanoantenna is proposed to augment the conversion efficiency up to tens of per cent due to increasing quality factors of the involved resonant states. Our findings delineate novel promising strategies in the design of functional elements for nonlinear nanophotonics applications.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 998
Author(s):  
Diego R. Abujetas ◽  
José A. Sánchez-Gil

Resonant optical modes arising in all-dielectric metasurfaces have attracted much attention in recent years, especially when so-called bound states in the continuum (BICs) with diverging lifetimes are supported. With the aim of studying theoretically the emergence of BICs, we extend a coupled electric and magnetic dipole analytical formulation to deal with the proper metasurface Green function for the infinite lattice. Thereby, we show how to excite metasurface BICs, being able to address their near-field pattern through point-source excitation and their local density of states. We apply this formulation to fully characterize symmetry-protected BICs arising in all-dielectric metasurfaces made of Si nanospheres, revealing their near-field pattern and local density of states, and, thus, the mechanisms precluding their radiation into the continuum. This formulation provides, in turn, an insightful and fast tool to characterize BICs (and any other leaky/guided mode) near fields in all-dielectric (and also plasmonic) metasurfaces, which might be especially useful for the design of planar nanophotonic devices based on such resonant modes.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Diego R. Abujetas ◽  
Nuno de Sousa ◽  
Antonio García-Martín ◽  
José M. Llorens ◽  
José A. Sánchez-Gil

Abstract Bound states in the continuum (BICs) emerge throughout physics as leaky/resonant modes that remain, however, highly localized. They have attracted much attention in photonics, and especially in metasurfaces. One of their most outstanding features is their divergent Q-factors, indeed arbitrarily large upon approaching the BIC condition (quasi-BICs). Here, we investigate how to tune quasi-BICs in magneto-optic (MO) all-dielectric metasurfaces. The impact of the applied magnetic field in the BIC parameter space is revealed for a metasurface consisting of lossless semiconductor spheres with MO response. Through our coupled electric/magnetic dipole formulation, the MO activity is found to manifest itself through the interference of the out-of-plane electric/magnetic dipole resonances with the (MO-induced) in-plane magnetic/electric dipole, leading to a rich, magnetically tuned quasi-BIC phenomenology, resembling the behavior of Brewster quasi-BICs for tilted vertical-dipole resonant metasurfaces. Such resemblance underlies our proposed design for a fast MO switch of a Brewster quasi-BIC by simply reversing the driving magnetic field. This MO-active BIC behavior is further confirmed in the optical regime for a realistic Bi:YIG nanodisk metasurface through numerical calculations. Our results present various mechanisms to magneto-optically manipulate BICs and quasi-BICs, which could be exploited throughout the electromagnetic spectrum with applications in lasing, filtering, and sensing.


Sign in / Sign up

Export Citation Format

Share Document