scholarly journals Crack closure and flexural tensile capacity with SMA fibers randomly embedded on tensile side of mortar beams

2020 ◽  
Vol 9 (1) ◽  
pp. 354-366 ◽  
Author(s):  
Chi-Young Jung ◽  
Jong-Han Lee

AbstractIn this study, an experimental investigation was conducted to assess the flexural tensile strength and crack-closing performance of mortar beams containing short shape memory alloy (SMA) fibers, randomly distributed only on the tensile side. The SMA fibers were mainly composed of titanium (Ti), nickel (Ni), and niobium (Nb). In addition, the effect of tensile steel wires on the flexural strength and crack-closing performance was evaluated. A four-point bending test was performed to evaluate the post-cracking tensile strength. This study also suggested a proper model to calculate the ultimate flexural moment of the SMA fiber–embedded beams. Subsequently, a heating plate that could be installed at the bottom of the beam was used to induce the shape memory effect and measure the closed crack width. This study assessed the crack-closing performance induced by the SMA fibers at the bottom side of the beams and the resistance of the tensile wires in the beams.

2020 ◽  
Vol 309 ◽  
pp. 57-61
Author(s):  
Jakub Řepka ◽  
Tomáš Vlach ◽  
Diana Mariaková ◽  
Zuzana Jirkalová ◽  
Petr Hájek

This paper discusses the feasibility of an innovative anchoring element which is designed to be integrated into the volume of an ultra-thin coffered façade panel made of textile reinforced concrete and to not increase its external dimensions. The first part of the article describes the composition and shape of the façade panel and focuses on the manufacturing of the composite anchoring element made of carbon technical textile penetrated with polymer matrix which is intentionally identical composition as in the case of the façade panel reinforcement. The second part of the article focuses on the behavior of the composite anchoring element and its effect on its surroundings during the mechanical loading of the façade panel. Specimens of the coffered façade panel with integrated anchoring elements were subjected to four-point bending test to determine the impact of the anchoring elements on the façade panel flexural tensile strength and type of failure. Additional specimens were tested to determine the load-bearing capacity of the anchoring elements.


2021 ◽  
Vol 1144 (1) ◽  
pp. 012039
Author(s):  
M A Iman ◽  
N Mohamad ◽  
A A A Samad ◽  
Steafenie George ◽  
M A Tambichik ◽  
...  

2021 ◽  
pp. 152808372199377
Author(s):  
Jalil Hajrasouliha ◽  
Mohammad Sheikhzadeh

In the interest of reducing the weight and also cost of blade skins, various automatic preform manufacturing processes were developed including tape laying, filament winding and braiding. Among them, the circular braiding process was found to be an efficient method in producing seamless preforms on mandrels with various geometries. In this regard, an attempt was made to produce a carbon fiber reinforced composite with the shape of NACA 23018 airfoil using a circular braiding machine. Thus, suitable wooden mandrels were manufactured using NACA 23018 airfoil coordinates, which were obtained by assuming the perimeter of 20 cm. Furthermore, both biaxially and triaxially braided preforms were produced and subsequently impregnated with epoxy resin through an appropriate fabrication method. To assess their performance, four-point bending test was carried out on samples. Ultimately, the elastic response of braided composite airfoils was predicted using a meso-scale finite element modeling and was validated with experimental results.


2012 ◽  
Vol 184-185 ◽  
pp. 1163-1166
Author(s):  
Xi An Xie ◽  
Gao Feng Quan

Through the four-point bending test of lath-shaped heat treated AZ31 magnesium alloy, the bending properties and damage characteristics were explored. The results show that the optimal bending strength of the magnesium alloy were 355.1MPa and 259.2MPa for extruded and cast samples, respectively, after corresponding heat treatment with 350°C, 90min and 400°C, 30min. The initial cracks both occurred at the loading point after applied load exceeded the yield limit of AZ31 magnesium alloy. Surface bump, cracks and other damage morphology accompanied by a large number of twinning organizations were found on the surface of the samples.


2016 ◽  
Vol 57 (3) ◽  
pp. 335-343 ◽  
Author(s):  
Xiaolong Dong ◽  
Hongwei Zhao ◽  
Lin Zhang ◽  
Hongbing Cheng ◽  
Jing Gao

2015 ◽  
Vol 64 (4) ◽  
pp. 323-329 ◽  
Author(s):  
Hidetoshi KOBAYASHI ◽  
Noboru KONDA ◽  
Joy-A-Ka SUTEP ◽  
Ketaro HORIKAWA ◽  
Takeshi YAMAUCHI

Sign in / Sign up

Export Citation Format

Share Document