scholarly journals Reabilitation of a wastewater treatment plant – possible environment impact

Author(s):  
Mădălina Stănescu ◽  
Constantin Buta ◽  
Geanina Mihai

Abstract Romania, has declared, by the Governmental Decision nr.352/2005, all its territory as a sensitive area. This implies that, for all urban agglomerations larger than 10.000 population equivalent waste water treatment plants (WWTP) with nutrient removal must be built or upgraded. This paper presents the results regarding the possible environmental impacts expected from the project for construction of waste water treatment plant in the City of Vaslui, with main focus on surface water. This research study includes assessment methodology, project description regarding the rehabilitation and extension of the Vaslui waste water treatment plant, data related to water resources, impact assessment on water and appropriate mitigation measures. The assessment of the impacts has been performed for the construction and operational phase of the wastewater treatment plant. The construction phase was subdivided into several phases, while in the operational phase the impacts are analyzed following the line for treatment of the wastewater and effluent production, the line for sludge production and drying process, sludge disposal in safety conditions considering the provisions of 86/278/EEC Directive and the line for biogas utilization.

EKUILIBIUM ◽  
2011 ◽  
Vol 10 (1) ◽  
Author(s):  
Muljadi Muljadi

<p><strong><em>Abstract</em></strong><strong>: </strong><em>Batik industry in general is equipped with the Waste Water Treatment Plant (WWTP) used for wastewater treatment in order not to endanger the environment. Printed batik industry in Makamhaji, Sukoharjo equipped Wastewater Treatment Plant (WWTP) with the bar screen, sedimentation and coagulation-flocculation for wastewater treatment in the process is simple and economical to manufacture.The research objective was to determine the magnitude of performance and efficiency of industrial WWTP batik print with the bar screen, sedimentation, and the process of coagulation - flocculation of the reduction parameters COD, BOD and heavy metals Cr. The method used is an experimental method is to perform experiments on WWTP wastewater treatment industry in the village batik print Butulan Makamhaji Sukoharjo district.Of research that has been made </em><em></em><em>known that the greater efficiency resulting from the units of the performance of the unit means that the better. And obtain maximum efficiency of the reduction parameters of COD, BOD is the bar screen unit for 37.61% and 27.22%. As for the maximum efficiency of the reduction of Cr metal pollutant parameters are in units of coagulation-flocculation of 23.66%.</em></p><p><em> </em><strong><em>Keywords</em></strong><em>: COD, BOD, heavy metals chromium, Efficiency WWTP, WWTP Performance</em></p>


2016 ◽  
Vol 9 (2) ◽  
Author(s):  
Dinda Rita K. Hartaja ◽  
Imam Setiadi

Generally, wastewater of nata de coco industry contains suspended solids and COD were high, ranging from 90,000 mg / l. The high level of of the wastewater pollutants, resulting in nata de coco industry can not be directly disposed of its wastewater into the environment agency. Appropriate technology required in order to process the waste water so that the treated water can meet the environmental quality standards that are allowed. Designing the waste water treatment plant that is suitable and efficient for treating industrial wastewater nata de coco is the activated sludge process. Wastewater treatment using activated sludge process of conventional (standard) generally consists of initial sedimentation, aeration and final sedimentation.Keywords : Activated Sludge, Design, IPAL


1991 ◽  
Vol 24 (10) ◽  
pp. 161-170 ◽  
Author(s):  
M. D. Sinke

Until a century ago, The Hague's waste water was discharged directly into the city's canals. However, the obnoxious smell and resultant pollution of local waters and beaches then necessitated the implementation of a policy of collecting and transferring waste water by means of a system of sewers. By 1937, it was being discharged, via a 400 metre-long sea outfall, directly into the North Sea. By 1967, however, the increasing volume of waste water being generated by The Hague and the surrounding conurbations called for the construction of a primary sedimentation plant. This had two sea outfalls, one 2.5 km long and the other 10 km long, the former for discharging pre-settled waste water and the latter for discharging sludge directly into the North Sea. This “separation plant” was enlarged during the period 1986-1990. On account of the little available area - only 4.1 ha - the plant had to be enlarged in two stages by constructing a biological treatment section and a sludge treatment section with a capacity of 1,700,000 p.e. (at 136 gr O2/p.e./day). In order to gain additional space, a number of special measures were introduced, including aerating gas containing 90% oxygen and stacked final clarifiers. Following completion of the sludge treatment section, it has become possible, since 1st May 1990, to dump digested sludge into a large reservoir (“The Slufter”), specially constructed to accommodate polluted mud dredged from the Rotterdam harbours and waterways. As a result of these measures, there has been a reduction of between 70% and 95% in North Sea pollution arising from the “Houtrust” waste water treatment plant. Related investment totalled Dfl. 200 million and annual operating and maintenance costs (including investment charges) will amount to Dfl. 30 million. Further measures will have to be taken in the future to reduce the discharge of phosphorus and nitrogen. So this enlargement is not the end. There will be continued extension of the purification operations of the “Houtrust” waste water treatment plant.


1992 ◽  
Vol 25 (4-5) ◽  
pp. 225-232
Author(s):  
C. F. Seyfried ◽  
P. Hartwig

This is a report on the design and operating results of two waste water treatment plants which make use of biological nitrogen and phosphate elimination. Both plants are characterized by load situations that are unfavourable for biological P elimination. The influent of the HILDESHEIM WASTE WATER TREATMENT PLANT contains nitrates and little BOD5. Use of the ISAH process ensures the optimum exploitation of the easily degradable substrate for the redissolution of phosphates. Over 70 % phosphate elimination and effluent concentrations of 1.3 mg PO4-P/I have been achieved. Due to severe seasonal fluctuations in loading the activated sludge plant of the HUSUM WASTE WATER TREATMENT PLANT has to be operated in the stabilization range (F/M ≤ 0.05 kg/(kg·d)) in order not to infringe the required effluent values of 3.9 mg NH4-N/l (2-h-average). The production of surplus sludge is at times too small to allow biological phosphate elimination to be effected in the main stream process. The CISAH (Combined ISAH) process is a combination of the fullstream with the side stream process. It is used in order to achieve the optimum exploitation of biological phosphate elimination by the precipitation of a stripped side stream with a high phosphate content when necessary.


1996 ◽  
Vol 33 (12) ◽  
pp. 251-254
Author(s):  
Karl Arno Bäumer ◽  
Angela Baumann

The Institute for Water and Waste Management (ISA) at the Aachen University of Technology (RWTH) verified, through semi-technical analysis, the efficiency of the planned upgrade of the Kleve-Salmorth waste water treatment plant. Additionally the allowable biological phosphorus removal limit and the scheduled simultaneous precipitation were also ascertained.


2009 ◽  
Vol 55 (No. 2) ◽  
pp. 62-68 ◽  
Author(s):  
J. Kára ◽  
Z. Pastorek ◽  
J. Mazancová ◽  
I. Hanzlíková

The basis of the biogas production in agriculture is the processing of waste agricultural products (particularly excrements of farm animals but also phytomass). Different but rather similar is the biogas production from biologically degradable municipal waste (BDMW) and biologically degradable industrial waste (BDIW) coming mainly from food industry. The processing of these wastes in agricultural biogas stations could significantly improve their economy. It is necessary to note that all these biogas stations differ from the wastewater cleaning plants where municipal sludge water from public sewers is processed. The municipal sludge water processing to biogas by anaerobic fermentation is a classical technology introduced all over the world. At present, about 100 wastewater cleaning plants operate in the Czech Republic using regular sludge processing into biogas. Electricity produced is utilised mainly for the needs of own operation of waste water treatment plant (WWTP), partly it is sold into public power net. The heat energy is used for heating in the process and its surplus is utilised for operational and administrative facilities. Usually, the heat and electricity quantities produced do not cover the wastewater cleaning plant operation. Agricultural biogas stations and biogas stations for BDMW processing provide considerably higher gas yields because they work with higher dry matter contents in substratum, i.e. 8–12% (compared with waste water treatment plants – 2–6%), and are able to produce high gas surpluses for following applications. Frequently discussed issue are the processing of slaughter waste and grass (or public green areas at biogas stations).


Sign in / Sign up

Export Citation Format

Share Document