Applications of halogen bonding in solution

2015 ◽  
Vol 87 (1) ◽  
pp. 15-41 ◽  
Author(s):  
Andreas Vargas Jentzsch

AbstractHalogen bonding is the noncovalent interaction where the halogen atom acts as an electrophile towards Lewis bases. Known for more than 200 years, only recently it has attracted interest in the context of solution-phase applications, especially during the last decade which was marked by the introduction of multitopic systems. In addition, the small yet rich collection of halogen-bond donor moieties that appeared in this period is shown to be versatile enough as to be applied in virtually any solvent system. This review covers the applications of halogen bonding in solution during the past ten years in a semi-comprehensive way. Emphasis is made on molecular recognition, catalytic applications and anion binding and transport. Medicinal applications are addressed as well with key examples. Focussing on the major differences observed for halogen bonding, as compared to the ubiquitous hydrogen bonding, it aims to contribute to the design of future solution-phase applications.

2019 ◽  
Author(s):  
Revannath L. Sutar ◽  
Elric Engelage ◽  
Raphael Stoll ◽  
Stefan Huber

Even though halogen bonding – the noncovalent interaction between electrophilic halogen substituents and Lewis bases – has now been established in molecular recognition and catalysis, its use in enantioselective processes is still very little explored. Herein, we present the synthesis of chiral bidentate halogen bond donors based on two iodoimidazolium units with rigidly attached chiral sidearms. With these Lewis acids, chiral recognition of a racemic diamine is achieved in NMR studies. DFT calculations support a 1:1 interaction of the halogen bond donor with both enantiomers and indicate that the chiral recognition is based on a different spatial orientation of the Lewis bases in the halogen bonded complexes. In addition, moderate enantioselectivity is achieved in a Mukaiyama aldol reaction with a preorganized variant of the chiral halogen bond donor. This represents the first case in which asymmetric induction was realized with a pure halogen bond donor lacking any additionally active functional groups.


2019 ◽  
Author(s):  
Revannath L. Sutar ◽  
Elric Engelage ◽  
Raphael Stoll ◽  
Stefan Huber

Even though halogen bonding – the noncovalent interaction between electrophilic halogen substituents and Lewis bases – has now been established in molecular recognition and catalysis, its use in enantioselective processes is still very little explored. Herein, we present the synthesis of chiral bidentate halogen bond donors based on two iodoimidazolium units with rigidly attached chiral sidearms. With these Lewis acids, chiral recognition of a racemic diamine is achieved in NMR studies. DFT calculations support a 1:1 interaction of the halogen bond donor with both enantiomers and indicate that the chiral recognition is based on a different spatial orientation of the Lewis bases in the halogen bonded complexes. In addition, moderate enantioselectivity is achieved in a Mukaiyama aldol reaction with a preorganized variant of the chiral halogen bond donor. This represents the first case in which asymmetric induction was realized with a pure halogen bond donor lacking any additionally active functional groups.


Author(s):  
Ruben D. Parra ◽  
Álvaro Castillo

The geometries and energetics of molecular self-assembly structures that contain a sequential network of cyclic halogen-bonding interactions are investigated theoretically. The strength of the halogen-bonding interactions is assessed by examining binding energies, electron charge transfer (NBO analysis) and electron density at halogen-bond critical points (AIM theory). Specifically, structural motifs having intramolecular N—X...N (X= Cl, Br, or I) interactions and the ability to drive molecular self-assemblyviathe same type of interactions are used to construct larger self-assemblies of up to three unit motifs. N—X...N halogen-bond cooperativity as a function of the self-assembly size, and the nature of the halogen atom is also examined. The cyclic network of the halogen-bonding interactions provides a suitable cavity rich in electron density (from the halogen atom lone pairs not involved in the halogen bonds) that can potentially bind an electron-deficient species such as a metal ion. This possibility is explored by examining the ability of the N—X...N network to bind Na+. Likewise, molecular self-assembly structures driven by the weaker C—X...N halogen-bonding interactions are investigated and the results compared with those of their N—X...N counterparts.


2017 ◽  
Vol 203 ◽  
pp. 485-507 ◽  
Author(s):  
Lee Brammer

The role of the closing lecture in a Faraday Discussion is to summarise the contributions made to the Discussion over the course of the meeting and in so doing capture the main themes that have arisen. This article is based upon my Closing Remarks Lecture at the 203rdFaraday Discussion meeting on Halogen Bonding in Supramolecular and Solid State Chemistry, held in Ottawa, Canada, on 10–12thJuly, 2017. The Discussion included papers on fundamentals and applications of halogen bonding in the solid state and solution phase. Analogous interactions involving main group elements outside group 17 were also examined. In the closing lecture and in this article these contributions have been grouped into the four themes: (a) fundamentals, (b) beyond the halogen bond, (c) characterisation, and (d) applications. The lecture and paper also include a short reflection on past work that has a bearing on the Discussion.


2015 ◽  
Vol 71 (10) ◽  
pp. 900-902 ◽  
Author(s):  
Alan K. Brisdon ◽  
Abeer M. T. Muneer ◽  
Robin G. Pritchard

Halogen bonding is an intermolecular interaction capable of being used to direct extended structures. Typical halogen-bonding systems involve a noncovalent interaction between a Lewis base, such as an amine, as an acceptor and a halogen atom of a halofluorocarbon as a donor. Vapour-phase diffusion of 1,4-diazabicyclo[2.2.2]octane (DABCO) with 1,2-dibromotetrafluoroethane results in crystals of the 1:1 adduct, C2Br2F4·C6H12N2, which crystallizes as an infinite one-dimensional polymeric structure linked by intermolecular N...Br halogen bonds [2.829 (3) Å], which are 0.57 Å shorter than the sum of the van der Waals radii.


2017 ◽  
Vol 203 ◽  
pp. 245-255 ◽  
Author(s):  
Xiaoxiong Li ◽  
Jason Y. C. Lim ◽  
Paul D. Beer

A family of cationic halogen bonding [2]rotaxanes have been synthesised via an active-metal template synthetic strategy. 1H NMR spectroscopic anion titration investigations reveal these interlocked host systems recognize halides selectively over oxoanions in aqueous–organic solvent media. Furthermore, systematically modulating the rigidity and size of the rotaxanes’ anion binding cavities via metal complexation, as well as by varying the number of halogen bond-donor groups in the axle component, was found to dramatically influence halide anion selectivity.


2020 ◽  
Author(s):  
Andrew Wang ◽  
Pierre Kennepohl

The role of halogen bonding (XB) in chemical catalysis has largely involved using XB donors as Lewis acid activators to modulate the reactivity of partner Lewis bases. We explore a more uncommon scenario, where a Lewis base modulates reactivity via a spectator halogen bond interaction. Our computational studies reveal that spectator halogen bonds may play an important role in modulating the rate of S<sub>N</sub>2 reactions. Most notably, π acceptors such as PF<sub>3</sub> significantly decrease the barrier to subsitution by decreasing electron density in the very electron rich transition state. Such π-backbonding represents an example of a heretofor unexplored situation in halogen bonding: the combination of both s-donation and π-backdonation in this “non-covalent” interaction.


2015 ◽  
Vol 51 (17) ◽  
pp. 3686-3688 ◽  
Author(s):  
Jason Y. C. Lim ◽  
Paul D. Beer

The first example of perrhenate anion binding and fluorescence sensing in water by a halogen bond donor is reported.


Crystals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 354 ◽  
Author(s):  
Lukáš Masaryk ◽  
Ján Moncol ◽  
Radovan Herchel ◽  
Ivan Nemec

The synthesis and properties of new chalcone ligand 4I-L ((2E)-1-[4-(1H-imidazol-1-yl)phenyl]-3-(4-iodophenyl)prop-2-en-1-one) and tetracoordinate Co(II) complex [Co(4I-L)2Cl2], (1a), are reported in this article. Upon recrystallization of 1a, the single crystals of [Co(4I-L)4Cl2]·2DMF·3Et2O (1b) were obtained and crystal structure was determined using X-ray diffraction. The non-covalent interactions in 1b were thoroughly analyzed and special attention was dedicated to interactions formed by the peripheral iodine substituents. The density functional theory (DFT), atoms in molecule (AIM) and noncovalent interaction (NCI) methods and electronic localization function (ELF) calculations were used to investigate halogen bond formed between the iodine functional groups and co-crystallized molecules of diethyl ether.


2021 ◽  
Author(s):  
Svitlana V. Shishkina ◽  
Viktoriya V. Dyakonenko ◽  
Oleg V. Shishkin ◽  
Volodimir P. Semynozhenko ◽  
Tatiana Yu. Bogashchenko ◽  
...  

Abstract The study of two complexes of fluorenonophane with CHCl3 and CHBr3 molecules has revealed that they differ mainly by the halogen bonds between host and guest molecules. The experimental and theoretical quantum chemical study has shown that the strength of a halogen bond depends on the nature of a halogen atom as well as its orientation to the π-system. The more positive electrostatic potential was revealed at the bromine atom indicating the stronger halogen bond with its participation that was confirmed by the interaction energies calculated for corresponding dimers and the evaluation of the true energy of a halogen bond. The orientation of the chlorine atom at the carbon aromatic atom instead of the center of the benzene ring leads to the shortest Hal…C distance that points out the stronger interaction according to the geometrical characteristics. The EDA analysis of the fluorenonophane complexes with CHCl3 and CHBr3 and their analogs with one halogen atom replaced by the hydrogen atom allows us to presume that the nature of halogen bonding is rather dispersive than electrostatic.


Sign in / Sign up

Export Citation Format

Share Document