Benzhydrylium and tritylium ions: complementary probes for examining ambident nucleophiles

2015 ◽  
Vol 87 (4) ◽  
pp. 341-351 ◽  
Author(s):  
Armin R. Ofial

AbstractThe linear free energy relationship log k = sN(N + E) (eq. 1), in which E is an electrophilicity, N is a nucleophilicity, and sN is a nucleophile-dependent sensitivity parameter, is a reliable tool for predicting rate constants of bimolecular electrophile-nucleophile combinations. Nucleophilicity scales that are based on eq. (1) rely on a set of structurally similar benzhydrylium ions (Ar2CH+) as reference electrophiles. As steric effects are not explicitely considered, eq. (1) cannot unrestrictedly be employed for reactions of bulky substrates. Since, on the other hand, the reactions of tritylium ions (Ar3C+) with hydride donors, alcohols, and amines were found to follow eq. (1), tritylium ions turned out to be complementary tools for probing organic reactivity. Kinetics of the reactions of Ar3C+ with π-nucleophiles (olefins), n-nucleophiles (amines, alcohols, water), hydride donors and ambident nucleophiles, such as the anions of 5-substituted Meldrum’s acids, are discussed to analyze the applicability of tritylium ions as reference electrophiles.

2005 ◽  
Vol 83 (9) ◽  
pp. 1554-1560 ◽  
Author(s):  
Thanh Binh Phan ◽  
Herbert Mayr

The kinetics of the reactions of benzhydrylium ions with some alcohols and alkoxides dissolved in the corresponding alcohols were photometrically investigated. Using the correlation equation log k (20 °C) = s(E + N), the N and s parameters of methoxide, ethoxide, n-propoxide, and isopropoxide in alcohol–acetonitrile (91:9, v/v) were determined. The cosolvent acetonitrile has only a little influence on the rate constants of the reactions of alcohols and alkoxides. The order of N values (OH– << MeO– < EtO– < n-PrO– < i-PrO–) shows that alkoxides differ only moderately in reactivity but are considerably more nucleophilic than hydroxide. As a consequence, the nucleophilic reactivity of a 0.5 mmol/L aqueous hydroxide solution increases by a factor of 13 when 10% (v/v) methanol is added. In 1–10 mmol/L alkoxide solutions in alcohols, weak electrophiles react considerably faster with alkoxides than with the corresponding alcohols. With increasing electrophilicity, the preference for alkoxides decreases, and electrophiles of –3 < E < 3 react with alkoxides (1–10 mmol/L) and alcohols with comparable rates. Stronger electrophiles will react with alcohols exclusively when alkoxides are present in concentrations ≤10 mmol/L. Key words: kinetics, alcohol, alkoxide, linear free energy relationship, nucleophilicity.<


1987 ◽  
Vol 137 (5) ◽  
pp. 471-474 ◽  
Author(s):  
Rongti Chen (Y.T. Chen) ◽  
Jiachang Liang ◽  
Youming Du ◽  
Chun Cao ◽  
Dinzhen Yin ◽  
...  

2020 ◽  
Vol 18 (11) ◽  
pp. 2113-2119 ◽  
Author(s):  
Mads Mansø ◽  
Anne Ugleholdt Petersen ◽  
Kasper Moth-Poulsen ◽  
Mogens Brøndsted Nielsen

The kinetics of the thermal quadricyclane-to-norbornadiene (QC-to-NBD) isomerization follows a linear-free-energy relationship when using Creary radical values for a selection of aryl/cyano disubstituted derivatives.


1971 ◽  
Vol 49 (2) ◽  
pp. 210-217 ◽  
Author(s):  
R. E. Williams ◽  
M. L. Bender

The substituent effect on the chymotrypsin-catalyzed hydrolysis of several phenyl esters of specific substrates has been studied. The second-order acylation rate constants (kcat/Km(app)) obey a linear free energy relationship with ρ = +0.63 for phenyl hippurates and ρ = +0.46 for phenyl N-benzyloxycarbonyl-L-tryptophanates when substituents are introduced into the phenyl group of the ester function. These results further support the previously proposed general acid – general base mechanism for the acylation reaction and the formation of a tetrahedral intermediate in the course of the reaction.


Sign in / Sign up

Export Citation Format

Share Document