Linear free energy relationship rate constants and basicities of N-substituted phenyl glycines in positronium-glycine complex formation

1987 ◽  
Vol 137 (5) ◽  
pp. 471-474 ◽  
Author(s):  
Rongti Chen (Y.T. Chen) ◽  
Jiachang Liang ◽  
Youming Du ◽  
Chun Cao ◽  
Dinzhen Yin ◽  
...  
2015 ◽  
Vol 87 (4) ◽  
pp. 341-351 ◽  
Author(s):  
Armin R. Ofial

AbstractThe linear free energy relationship log k = sN(N + E) (eq. 1), in which E is an electrophilicity, N is a nucleophilicity, and sN is a nucleophile-dependent sensitivity parameter, is a reliable tool for predicting rate constants of bimolecular electrophile-nucleophile combinations. Nucleophilicity scales that are based on eq. (1) rely on a set of structurally similar benzhydrylium ions (Ar2CH+) as reference electrophiles. As steric effects are not explicitely considered, eq. (1) cannot unrestrictedly be employed for reactions of bulky substrates. Since, on the other hand, the reactions of tritylium ions (Ar3C+) with hydride donors, alcohols, and amines were found to follow eq. (1), tritylium ions turned out to be complementary tools for probing organic reactivity. Kinetics of the reactions of Ar3C+ with π-nucleophiles (olefins), n-nucleophiles (amines, alcohols, water), hydride donors and ambident nucleophiles, such as the anions of 5-substituted Meldrum’s acids, are discussed to analyze the applicability of tritylium ions as reference electrophiles.


2005 ◽  
Vol 83 (9) ◽  
pp. 1554-1560 ◽  
Author(s):  
Thanh Binh Phan ◽  
Herbert Mayr

The kinetics of the reactions of benzhydrylium ions with some alcohols and alkoxides dissolved in the corresponding alcohols were photometrically investigated. Using the correlation equation log k (20 °C) = s(E + N), the N and s parameters of methoxide, ethoxide, n-propoxide, and isopropoxide in alcohol–acetonitrile (91:9, v/v) were determined. The cosolvent acetonitrile has only a little influence on the rate constants of the reactions of alcohols and alkoxides. The order of N values (OH– << MeO– < EtO– < n-PrO– < i-PrO–) shows that alkoxides differ only moderately in reactivity but are considerably more nucleophilic than hydroxide. As a consequence, the nucleophilic reactivity of a 0.5 mmol/L aqueous hydroxide solution increases by a factor of 13 when 10% (v/v) methanol is added. In 1–10 mmol/L alkoxide solutions in alcohols, weak electrophiles react considerably faster with alkoxides than with the corresponding alcohols. With increasing electrophilicity, the preference for alkoxides decreases, and electrophiles of –3 < E < 3 react with alkoxides (1–10 mmol/L) and alcohols with comparable rates. Stronger electrophiles will react with alcohols exclusively when alkoxides are present in concentrations ≤10 mmol/L. Key words: kinetics, alcohol, alkoxide, linear free energy relationship, nucleophilicity.<


1971 ◽  
Vol 49 (2) ◽  
pp. 210-217 ◽  
Author(s):  
R. E. Williams ◽  
M. L. Bender

The substituent effect on the chymotrypsin-catalyzed hydrolysis of several phenyl esters of specific substrates has been studied. The second-order acylation rate constants (kcat/Km(app)) obey a linear free energy relationship with ρ = +0.63 for phenyl hippurates and ρ = +0.46 for phenyl N-benzyloxycarbonyl-L-tryptophanates when substituents are introduced into the phenyl group of the ester function. These results further support the previously proposed general acid – general base mechanism for the acylation reaction and the formation of a tetrahedral intermediate in the course of the reaction.


2004 ◽  
Vol 82 (8) ◽  
pp. 1294-1303 ◽  
Author(s):  
Vanessa Renée Little ◽  
Keith Vaughan

1-Methylpiperazine was coupled with a series of diazonium salts to afford the 1-methyl-4-[2-aryl-1-diazenyl]piperazines (2), a new series of triazenes, which have been characterized by 1H and 13C NMR spectroscopy, IR spectroscopy, and elemental analysis. Assignment of the chemical shifts to specific protons and carbons in the piperazine ring was facilitated by comparison with the chemical shifts in the model compounds piperazine and 1-methylpiperazine and by a HETCOR experiment with the p-tolyl derivative (2i). A DEPT experiment with 1-methylpiperazine (6) was necessary to distinguish the methyl and methylene groups in 6, and a HETCOR spectrum of 6 enabled the correlation of proton and carbon chemical shifts. Line broadening of the signals from the ring methylene protons is attributed to restricted rotation around the N2-N3 bond of the triazene moiety in 2. The second series of triazenes, the ethyl 4-[2-phenyl-1-diazenyl]-1-piperazinecarboxylates (3), have been prepared by similar diazonium coupling to ethyl 1-piperazinecarboxylate and were similarly characterized. The chemical shifts of the piperazine ring protons are much closer together in series 3 than in series 2, resulting in distortion of the multiplets for these methylenes. It was noticed that the difference between these chemical shifts in 3 exhibited a linear free energy relationship with the Hammett substituent constants for the substituents in the aryl ring. Key words: triazene, piperazine, diazonium coupling, NMR, HETCOR, linear free energy relationship.


1983 ◽  
Vol 38 (12) ◽  
pp. 1337-1341
Author(s):  
J. Zechner ◽  
N. Getoff ◽  
I. Timtcheva ◽  
F. Fratev ◽  
St. Minchef

Abstract Flash photolysis of a series of 2-phenylindandione-1,3 derivatives substituted in the 4′ position results in both the formation of stable benzylidenephthalides and of phenylindan-1,3-dion-2-yl radicals. The u. v. absorption maxima of these radicals are dependent on the solvent and show a bathochromic shift upon substitution. These substitution effects were correlated by means of a linear free energy relationship. Attempts were made to draw conclusions concerning the changes in the gap of the states involved and their curvature due to substitution.


Sign in / Sign up

Export Citation Format

Share Document