scholarly journals Multivariate Padé Approximations For Solving Nonlinear Diffusion Equations

Open Physics ◽  
2015 ◽  
Vol 13 (1) ◽  
Author(s):  
V. Turut

AbstractIn this paper, multivariate Padé approximation is applied to power series solutions of nonlinear diffusion equations. As it is seen from tables, multivariate Padé approximation (MPA) gives reliable solutions and numerical results.

2007 ◽  
Vol 8 (1) ◽  
pp. 189-215 ◽  
Author(s):  
Fuensanta Andreu ◽  
José M. Mazón ◽  
Julio D. Rossi ◽  
Julián Toledo

2014 ◽  
Vol 2014 ◽  
pp. 1-17
Author(s):  
Junquan Song ◽  
Yujian Ye ◽  
Danda Zhang ◽  
Jun Zhang

Conditional Lie-Bäcklund symmetry approach is used to study the invariant subspace of the nonlinear diffusion equations with sourceut=e−qx(epxP(u)uxm)x+Q(x,u),m≠1. We obtain a complete list of canonical forms for such equations admit multidimensional invariant subspaces determined by higher order conditional Lie-Bäcklund symmetries. The resulting equations are either solved exactly or reduced to some finite-dimensional dynamic systems.


Author(s):  
Shou-Fu Tian ◽  
Mei-Juan Xu ◽  
Tian-Tian Zhang

Under investigation in this work is a generalized higher-order beam equation, which is an important physical model and describes the vibrations of a rod. By considering Lie symmetry analysis, and using the power series method, we derive the geometric vector fields, symmetry reductions, group invariant solutions and power series solutions of the equation, respectively. The convergence analysis of the power series solutions are also provided with detailed proof. Furthermore, by virtue of the multipliers, the local conservation laws of the equation are derived as well. Furthermore, an effective and direct approach is proposed to study the symmetry-preserving discretization for the equation via its potential system. Finally, the invariant difference models of the generalized beam equation are successfully constructed. Our results show that it is very useful to construct the difference models of the potential system instead of the original equation.


Sign in / Sign up

Export Citation Format

Share Document