scholarly journals Comparative study of the thermal performance of four different parallel flow shell and tube heat exchangers with different performance indicators

Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 1121-1135
Author(s):  
Chulin Yu ◽  
Haiqing Zhang ◽  
Youqiang Wang ◽  
Jin Wang ◽  
Bingjun Gao ◽  
...  

Abstract Round rod baffle (RRB), plain plate baffle (PPB), wavy-shaped plate baffle (WSB) and polygonal-shaped plate baffle (PSB) are four commonly used baffles in parallel flow shell and tube heat exchangers (STHXs). Comparative study of these four different baffles are numerically carried out using different performance indicators including Nusselt number, friction factor, performance evaluation criterion, entropy generation ratio, and entransy dissipation ratio for flow in full turbulent regime. Heat transfer mechanism has also been discussed. Correlations for Nusselt number and friction factor are fitted and the cost estimation using Hall’s method is compared. It is found that the Nusselt number of STHX-PPB, STHX-WSB, and STHX-PSB increased by 20.9%, 15.2%, and 23.9% averagely compared with STHX-RRB, respectively. The friction factor can be increased on average by 142.0%, 154.5%, and 242.4%, respectively. However, the overall performance of them is only 90.1%, 84.4%, and 82.3% that of STHX-RRB, respectively. The sequence of entropy generation and entransy dissipation is STHX-RRB > STHX-WSB > STHX-PPB > STHX-PSB. The inlet Re and baffle distance have significant effects on different performance indicators while the baffle width does not. Finally, the results show that the STHX-PSB can reduce the total cost as it has better ability on heat enhancement.

Author(s):  
M. R. Salem ◽  
K. M. Elshazly ◽  
R. Y. Sakr ◽  
R. K. Ali

The present work experimentally investigates the characteristics of convective heat transfer in horizontal shell and coil heat exchangers in addition to friction factor for fully developed flow through the helically coiled tube (HCT). The majority of previous studies were performed on HCTs with isothermal and isoflux boundary conditions or shell and coil heat exchangers with small ranges of HCT configurations and fluid operating conditions. Here, five heat exchangers of counter-flow configuration were constructed with different HCT-curvature ratios (δ) and tested at different mass flow rates and inlet temperatures of the two sides of the heat exchangers. Totally, 295 test runs were performed from which the HCT-side and shell-side heat transfer coefficients were calculated. Results showed that the average Nusselt numbers of the two sides of the heat exchangers and the overall heat transfer coefficients increased by increasing coil curvature ratio. The average increase in the average Nusselt number is of 160.3–80.6% for the HCT side and of 224.3–92.6% for the shell side when δ increases from 0.0392 to 0.1194 within the investigated ranges of different parameters. Also, for the same flow rate in both heat exchanger sides, the effect of coil pitch and number of turns with the same coil torsion and tube length is remarkable on shell average Nusselt number while it is insignificant on HCT-average Nusselt number. In addition, a significant increase of 33.2–7.7% is obtained in the HCT-Fanning friction factor (fc) when δ increases from 0.0392 to 0.1194. Correlations for the average Nusselt numbers for both heat exchanger sides and the HCT Fanning friction factor as a function of the investigated parameters are obtained.


Author(s):  
Guidong Chen ◽  
Qiuwang Wang

In the present paper, flow and heat transfer characteristics of shell-and-tube heat exchanger with continuous helical baffles (CH-STHX) is experimentally studied. Correlations for heat transfer and pressure drop, which are estimated by Nusselt number and friction factor, are fitted by experiment data for thermal design. Computational Fluid Dynamic (CFD) method is also used to compare the heat transfer and flow performance of STHX with continuous helical baffles (CH-STHX), STHX with combined helical baffles (CMH-STHX) and STHX with discontinuous helical baffles (DCH-STHX). The numerical results show that, for the same Reynolds number, the Nusselt numbers Nuo of the CMH-STHX and CH-STHX is about 37.6%, 78.2% higher than that of the DCH-STHX; the friction factor fo of the CH-STHX is about 14.8% and 150.2% higher than that of CMH-STHX and DCH-STHX. If the velocity ratios RCMH, CH and RDCH, CH are bigger than 1.55 and 4.0 in the Nusselt number range from 40 to 70, the CMH-STHX and the DCH-STHX may have higher Nusselt numbers than the CH-STHX for the same mass flow rate in the shell side.


Author(s):  
Emrah Deniz ◽  
I. Yalcin Uralcan

Mini and microchannel applications have become an important and attractive research area during the past decades. For micro systems design purposes, numerical and experimental studies have been conducted on flow and heat transfer characteristics of mini and microchannels and various friction factor and Nusselt number correlations have been proposed. Some researchers have tried to apply conventional tube correlations to mini and micro channels, rather than deriving new correlations. In this study, using commercial CFD software, flow and heat transfer characteristics in laminar and turbulent flow through circular channels are analyzed numerically. The applicability of conventional correlations in calculating the friction factor and Nusselt number is investigated. It is concluded that, in laminar regime conventional correlations can be used to calculate the friction factor for the channel sizes considered. In turbulent regime, however, numerical results for friction factor yielded greater values than those calculated by the conventional correlations. Numerical Nusselt numbers are found to be closer to the conventional values in laminar and turbulent regimes. In turbulent regime, on the other hand, Nusselt number values calculated with the microchannel correlations are determined to be greater than the numerical results and the values calculated with the conventional correlations.


1992 ◽  
Vol 114 (2) ◽  
pp. 373-382 ◽  
Author(s):  
D. A. Olson

We have measured heat transfer and pressure drop of three thin, compact heat exchangers in helium gas at 3.5 MPa and higher, with Reynolds numbers of 450 to 36,000. The flow geometries for the three heat exchanger specimens were: circular tube, rectangular channel, and staggered pin fin with tapered pins. The specimens were heated radiatively at heat fluxes up to 77 W/cm2. Correlations were developed for the isothermal friction factor as a function of Reynolds number, and for the Nusselt number as a function of Reynolds number and the ratio of wall temperature to fluid temperature. The specimen with the pin fin internal geometry had significantly better heat transfer than the other specimens, but it also had higher pressure drop. For certain conditions of helium flow and heating, the temperature more than doubled from the inlet to the outlet of the specimens, producing large changes in gas velocity, density, viscosity, and thermal conductivity. These changes in properties did not affect the correlations for friction factor and Nusselt number in turbulent flow.


Author(s):  
Shekh N. Hossain ◽  
S. Bari

High temperature diesel engine exhaust gas can be an important source of heat to operate a bottoming Rankine cycle to produce additional power. In this research, an experiment was performed to calculate the available energy in the exhaust gas of an automotive diesel engine. A shell and tube heat exchanger was used to extract heat from the exhaust gas, and the performance of two shell and tube heat exchangers was investigated with parallel flow arrangement using water as the working fluid. The heat exchangers were purchased from the market. As the design of these heat exchangers was not optimal, the effectiveness was found to be 0.52, which is much lower than the ideal one for this type of application. Therefore, with the available experimental data, the important geometric aspects of the heat exchanger, such as the number and diameter of the tubes and the length and diameter of the shell, were optimized using computational fluid dynamics (CFD) simulation. The optimized heat exchanger effectiveness was found to be 0.74. Using the optimized heat exchangers, simulation was conducted to estimate the possible additional power generation considering 70% isentropic turbine efficiency. The proposed optimized heat exchanger was able to generate 20.6% additional power, which resulted in improvement of overall efficiency from 30% to 39%. Upon investigation of the effect of the working pressure on additional power generation, it was found that higher additional power can be achieved at higher working pressure. For this particular application, 30 bar was found to be the optimum working pressure at rated load. The working pressure was also optimized at part load and found that 2 and 20 were the optimized working pressures for 25% and 83% load. As a result 1.8% and 13.3% additional power were developed, respectively. Thus, waste heat recovery technology has a great potential for saving energy, improving overall engine efficiency, and reducing toxic emission per kilowatt of power generation.


2014 ◽  
Vol 595 ◽  
pp. 128-133 ◽  
Author(s):  
Yuan Zhe Cao ◽  
Liu Juan Zhu ◽  
Yan Hua Shi

A comparative study on performances of rod-baffle (RB) and segment-baffle (SB) heat exchangers was carried out by numerical simulations under the same conditions. The results show that the overall heat transfer efficiencies are similar in these two types of heat exchangers with the same heat transfer areas. But RB heat exchangers show more uniform and smooth fluid flow, as well as much lower pressure in the shell side compared to SB counterparts. These detailed characteristics of heat transfer and fluid flow evidence better performances in RB heat exchangers and also provide a deeper insight into design and optimization of shell-and-tube heat exchangers.


2020 ◽  
Vol 164 ◽  
pp. 114545 ◽  
Author(s):  
Mohamed Ali ◽  
Milad Mansouri Rad ◽  
Abdullah Nuhait ◽  
Redhwan Almuzaiqer ◽  
Ashkan Alimoradi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document