Enhancement of OCT imaging by blood optical clearing in vessels – A feasibility study

2016 ◽  
Vol 5 (2) ◽  
Author(s):  
Olga Zhernovaya ◽  
Valery V. Tuchin ◽  
Martin J. Leahy

AbstractThe results of a feasibility study of the application of PEG-300 and fructose as two independent optical clearing agents for the reduction of light scattering in biological tissues are presented.An OCT system operating at 1300 nm was used to study optical clearing effects. InThe intradermal injection of fructose in combination with the intravenous injection of PEG-300 led to a rapid optical clearing effect. In the experiments on miceThe experiments on mice have clearly demonstrated that intradermal and intravenous injections of optical clearing agents enhanced light transport through the skin and blood vessels.

Author(s):  
Chris W. Drew ◽  
Alondra Izquierdo-Roman ◽  
Yajing Liu ◽  
Christopher G. Rylander

The complex morphological structure of skin with its variations in the indices of refraction of components therein provides a highly scattering medium for visible and near-infrared wavelengths of light. “Tissue optical clearing” increases transmission of near-collimated light in biological tissue, potentially enabling improved optical analysis and treatment techniques. Numerous methods of tissue optical clearing have been hypothesized using hyperosmostic agents [1]. These methods propose reduction in light scattering by means of dehydration of tissue constituents, replacement of interstitial or intracellular water with higher refractive agents, or structural modification or dissociation of collagen fibers [2]. It has been suggested that dehydration of tissue constituents alone can reduce light scattering by expulsing water between collagen fibrils, increasing protein and sugar concentrations, and decreasing refractive index mismatch [3].


Author(s):  
William C. Vogt ◽  
Christopher G. Rylander

Biological tissues are heterogeneous materials that may be considered mixtures of water, proteins, and cells. The large mismatch in refractive index between these constituents causes tissues to be highly turbid, diffusing light and limiting the efficacy of optical diagnostic and therapeutic techniques [1]. Mechanical optical clearing is a technique for reducing tissue scattering and absorption using controlled tissue deformation. Mechanical optical clearing is performed using indentation to locally modify tissue optical properties, including refractive index [2] and reduced scattering coefficient [3]. This effect is attributed to transient changes in tissue water distribution as a result of interstitial fluid flow due to tissue compression. In this study, we have developed a multi-domain mathematical framework for simulating mechanical optical clearing effects on tissue mechanical and optical behavior, including hyperelasticity, viscoelasticity, porous flow, and light transport. This model was then fitted to mechanical force data and used to predict experimentally measured optical transmission.


Author(s):  
Elina A. Genina ◽  
Luís M. C. Oliveira ◽  
Alexey N. Bashkatov ◽  
Valery V. Tuchin

2021 ◽  
Vol 2103 (1) ◽  
pp. 012048
Author(s):  
I T Shagautdinova ◽  
A M Likhter ◽  
K V Berezin ◽  
K N Dvoretsky ◽  
V V Nechaev ◽  
...  

Abstract Interaction of iohexol (Omnipaque), an X-Ray contrast agent, with a mimetic peptide of collagen (GPH)3 as one of the main components of biological tissues has been studied with the use of methods of classical molecular dynamics (GROMACS). Complex molecular modeling of the post-diffusion stage of optical clearing allowed to evaluate such parameters as the average number of hydrogen bonds, formed between the clearing agent and collagen per unit time, and the immersion agent’s effect on changes in the collagen peptide volume. The obtained results are compared with similar results for glycerol, a polyatomic alcohol, and with the existing experimental data on the efficiency of optical clearing of these immersion agents.


2021 ◽  
pp. 127-140
Author(s):  
Kirill V. Berezin ◽  
Konstantin N. Dvoretskiy ◽  
Maria L. Chernavina ◽  
Anatoly M. Likhter ◽  
Valery V. Tuchin

2008 ◽  
Vol 5 (6) ◽  
pp. 476-479 ◽  
Author(s):  
I V Larina ◽  
E F Carbajal ◽  
V V Tuchin ◽  
M E Dickinson ◽  
K V Larin

Sign in / Sign up

Export Citation Format

Share Document