High gas permeability of nanoZIF-8/polymer-based mixed matrix membranes intended for biogas purification

2020 ◽  
Vol 40 (6) ◽  
pp. 459-467 ◽  
Author(s):  
Putu Doddy Sutrisna ◽  
Emma Savitri

AbstractThe production of biomethane from the biogas purification process depends on the capacity of the separation technique employed to separate methane from carbon dioxide. Mixed matrix membranes (MMMs) combine the benefits of polymeric and inorganic materials, and it is believed that the trade-off between gas permeability and selectivity in polymeric membranes can be hampered by MMMs. Until recently, the development of MMMs for the biogas purification process has been constrained in lab scales. To be applied in large scales, the increase in gas permeability as well as the membrane performance under the influence of CO2 plasticization needs to be investigated. This paper reports the evaluation of gas permeability and CO2/CH4 gas separation performances of nano zeolitic imidazolate framework (ZIF)-8/Pebax-1657 to be used for biogas purification processes. In addition, the study on the CO2 plasticization behavior of MMMs fabricated with co-polymer Pebax was investigated. The incorporation of nanoZIF-8 particles inhibited the increase of CO2 permeability due to the reduced polymer flexibility. In addition, the diffusional selectivity of ZIF-8 improves the permeation behavior of both gases through MMMs. With nanoZIF-8/Pebax-1657 MMMs, the incorporation of particles improves the gas permeability with a slight decrease in gas selectivity, indicating a potentiality of the membranes used for biogas purification processes.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mehtap Safak Boroglu ◽  
Ismail Boz ◽  
Busra Kaya

Abstract In our study, the synthesis of zeolitic imidazolate framework (ZIF-12) crystals and the preparation of mixed matrix membranes (MMMs) with various ZIF-12 loadings were targeted. The characterization of ZIF-12 and MMMs were carried out by Fourier transform infrared spectroscopy analysis, thermogravimetric analysis, scanning electron microscopy (SEM), and thermomechanical analysis. The performance of MMMs was measured by the ability of binary gas separation. Commercial polyetherimide (PEI-Ultem® 1000) polymer was used as the polymer matrix. The solution casting method was utilized to obtain dense MMMs. In the SEM images of ZIF-12 particles, the particles with a rhombic dodecahedron structure were identified. From SEM images, it was observed that the distribution of ZIF-12 particles in the MMMs was homogeneous and no agglomeration was present. Gas permeability experiments of MMMs were measured for H2, CO2, and CH4 gases at steady state, at 4 bar and 35 °C by constant volume-variable pressure method. PEI/ZIF-12-30 wt% MMM exhibited high permeability and ideal selectivity values for H2/CH4 and CO2/CH4 were P H 2 / CH 4 = 331.41 ${P}_{{\text{H}}_{2}/{\text{CH}}_{4}}=331.41$ and P CO 2 / CH 4 = 53.75 ${P}_{{\text{CO}}_{2}/{\text{CH}}_{4}}=53.75$ gas pair.


2020 ◽  
Author(s):  
Muayad Al-shaeli ◽  
Stefan J. D. Smith ◽  
Shanxue Jiang ◽  
Huanting Wang ◽  
Kaisong Zhang ◽  
...  

<p>In this study, novel <a>mixed matrix polyethersulfone (PES) membranes</a> were synthesized by using two different kinds of metal organic frameworks (MOFs), namely UiO-66 and UiO-66-NH<sub>2</sub>. The composite membranes were characterised by SEM, EDX, FTIR, PXRD, water contact angle, porosity, pore size, etc. Membrane performance was investigated by water permeation flux, flux recovery ratio, fouling resistance and anti-fouling performance. The stability test was also conducted for the prepared mixed matrix membranes. A higher reduction in the water contact angle was observed after adding both MOFs to the PES and sulfonated PES membranes compared to pristine PES membranes. An enhancement in membrane performance was observed by embedding the MOF into PES membrane matrix, which may be attributed to the super-hydrophilic porous structure of UiO-66-NH<sub>2</sub> nanoparticles and hydrophilic structure of UiO-66 nanoparticles that could accelerate the exchange rate between solvent and non-solvent during the phase inversion process. By adding the MOFs into PES matrix, the flux recovery ratio was increased greatly (more than 99% for most mixed matrix membranes). The mixed matrix membranes showed higher resistance to protein adsorption compared to pristine PES membranes. After immersing the membranes in water for 3 months, 6 months and 12 months, both MOFs were stable and retained their structure. This study indicates that UiO-66 and UiO-66-NH<sub>2</sub> are great candidates for designing long-term stable mixed matrix membranes with higher anti-fouling performance.</p>


2018 ◽  
Vol 7 (3) ◽  
pp. 1 ◽  
Author(s):  
Tina Chakrabarty ◽  
Pradeep Neelakanda ◽  
Klaus-Viktor Peinemann

CO2 removal is necessary to mitigate the effects of global warming but it is a challenging process to separate CO2 from natural gas, biogas, and other gas streams. Development of hybrid membranes by use of polymers and metal-organic framework (MOF) particles is a viable option to overcome this challenge. A ZIF-7 nano-filler that was synthesized in our lab was embedded into a designed polymer matrix at various loadings and the performance of the mixed matrix membranes was evaluated in terms of gas permeance and selectivity. Hybrid membranes with various loadings (20, 30 and 40 wt%) were developed and tested at room temperature by a custom made time lag equipment and a jump in selectivity was observed when compared with the pristine polymer. A commercially attractive region for the selectivity CO2 over CH4 was achieved with a selectivity of 39 for 40 wt% particle loading. An increase in selectivity was observed with the increase of ZIF-7 loadings. Best performance was seen at 40% ZIF-7 loaded membrane with an ideal selectivity of 39 for CO2 over CH4. The obtained selectivity was 105% higher for CO2 over CH4 than the selectivity of the pristine polymer with a slight decrease in permeance. Morphological characterization of such developed membranes showed an excellent compatibility between the polymer and particle adhesion.


Membranes ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 155 ◽  
Author(s):  
Machiel van Essen ◽  
Esther Montrée ◽  
Menno Houben ◽  
Zandrie Borneman ◽  
Kitty Nijmeijer

Metal-organic frameworks (MOFs) as additives in mixed matrix membranes (MMMs) for gas separation have gained significant attention over the past decades. Many design parameters have been investigated for MOF based MMMs, but the spatial distribution of the MOF throughout MMMs lacks investigation. Therefore, magnetically aligned and enriched pathways of zeolitic imidazolate framework 8 (ZIF−8) in Matrimid MMMs were synthesized and investigated by means of their N2 and CO2 permeability. Magnetic ZIF−8 (m–ZIF−8) was synthesized by incorporating Fe3O4 in the ZIF−8 structure. The presence of Fe3O4 in m–ZIF−8 showed a decrease in surface area and N2 and CO2 uptake, with respect to pure ZIF−8. Alignment of m–ZIF−8 in Matrimid showed the presence of enriched pathways of m–ZIF−8 through the MMMs. At 10 wt.% m–ZIF−8 incorporation, no effect of alignment was observed for the N2 and CO2 permeability, which was ascribed anon-ideal tortuous alignment. However, alignment of 20 wt.% m–ZIF−8 in Matrimid showed to increase the CO2 diffusivity and permeability (19%) at 7 bar, while no loss in ideal selectivity was observed, with respect to homogeneously dispersed m–ZIF−8 membranes. Thus, the alignment of MOF particles throughout the matrix was shown to enhance the CO2 permeability at a certain weight content of MOF.


Computation ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 36 ◽  
Author(s):  
Keskin ◽  
Alsoy Altinkaya

Computational modeling of membrane materials is a rapidly growing field to investigate the properties of membrane materials beyond the limits of experimental techniques and to complement the experimental membrane studies by providing insights at the atomic-level. In this study, we first reviewed the fundamental approaches employed to describe the gas permeability/selectivity trade-off of polymer membranes and then addressed the great promise of mixed matrix membranes (MMMs) to overcome this trade-off. We then reviewed the current approaches for predicting the gas permeation through MMMs and specifically focused on MMMs composed of metal organic frameworks (MOFs). Computational tools such as atomically-detailed molecular simulations that can predict the gas separation performances of MOF-based MMMs prior to experimental investigation have been reviewed and the new computational methods that can provide information about the compatibility between the MOF and the polymer of the MMM have been discussed. We finally addressed the opportunities and challenges of using computational studies to analyze the barriers that must be overcome to advance the application of MOF-based membranes.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Stefan J. D. Smith ◽  
Bradley P. Ladewig ◽  
Anita J. Hill ◽  
Cher Hon Lau ◽  
Matthew R. Hill

2015 ◽  
Vol 3 (41) ◽  
pp. 20801-20810 ◽  
Author(s):  
Zixi Kang ◽  
Yongwu Peng ◽  
Zhigang Hu ◽  
Yuhong Qian ◽  
Chenglong Chi ◽  
...  

Mixed matrix membranes containing metal–organic frameworks were fabricated for pre-combustion CO2 capture.


Sign in / Sign up

Export Citation Format

Share Document