Toughened poly(lactic acid)/thermoplastic polyurethane uncompatibilized blends

2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Mateus Garcia Rodolfo ◽  
Lidiane Cristina Costa ◽  
Juliano Marini

Abstract Poly(lactic acid), PLA, is a biodegradable polymer obtained from renewable sources with similar properties when compared with petroleum-based thermoplastics but with inherent brittleness. In this work, the use of thermoplastic polyurethane (TPU) as toughening agent was evaluated. PLA/TPU blends with 25 and 50 wt% of TPU were produced in an internal mixer without the use of compatibilizers. Their thermal, rheological, and mechanical properties were analyzed and correlated with the developed morphology. Immiscible blends with dispersed droplets morphology were obtained, and it was observed an inversion between the matrix and dispersed phases with the increase of the TPU content. The presence of TPU altered the elasticity and viscosity of the blends when compared to PLA, besides acting as a nucleating agent. Huge increments in impact resistance (up to 365%) were achieved, indicating a great potential of TPU to be used as a PLA toughening agent.

2012 ◽  
Vol 488-489 ◽  
pp. 1393-1397
Author(s):  
Buranin Saengiet ◽  
Wasin Koosomsuan ◽  
Phassakarn Paungprasert ◽  
Rattikarn Khankrua ◽  
Sumonman Naimlang ◽  
...  

The frozen instant food packaging is the one of disposal product, which produced from petroleum–based plastic and has been accumulated worldwide pressuring on the environment. Therefore, the biodegradable plastics have become key candidates in this application. Poly(lactic acid) (PLA) was regarded as one of the most promising biodegradable polymer due to its good mechanical properties. The aim of this work was to study on the freezability and microwavability of PLA through crosslink reaction. For the improvement of the processibility of PLA, hyperbranched polymer (HBP) and polypropylene glycol (PPG) were used as plasticizer. Then the crosslinking of PLA was introduced by addition of peroxide (Luperox101) and triallyl isocyanurate (TAIC) in an internal mixer. Neat and modified PLA samples were characterized and testing for mechanical properties. From the gel content results, it was showed the increased value with the increased content of TAIC due to the denser crosslinked structure of polymer. This result was confirmed by FT-IR spectra. All modified PLA samples showed the higher %strain at break than neat PLA. In addition, impact resistance in frozen state showed the results of modified PLA with 0.1wt% of peroxide and 0.15 wt% of TAIC, was higher than neat PLA. Moreover, this composition also showed the highest microwave response and heat accumulation was suppressed when the specimen was immersed in the water during the test. From the results obtained in this work, the further investigation is needed to pursue and elucidate the relationship between the polymer structure and heat absorption when materials undergo the microwave radiation.


2013 ◽  
Vol 710 ◽  
pp. 85-88 ◽  
Author(s):  
Cheng Lang Li ◽  
Qiang Dou

A hydrazide compound (N-4) was used as a nucleating agent to induce the crystallization of poly (lactic acid) (PLA). PLA/N-4 samples were prepared by melt blending in an internal mixer. The melting and crystallization behavior and spherulitic morphology of the samples doped with different contents of N-4 were investigated by means of differential scanning calorimetry (DSC) and polarized light microscopy (PLM). It is found that the crystallization temperature and crystallinity increased but the spherulitic size of PLA decreased for the nucleated samples. It is indicated that N-4 is an effective nucleating agent for PLA.


2013 ◽  
Vol 013 (8) ◽  
pp. 949-955
Author(s):  
Lan Xiao-rong ◽  
Wu Feng ◽  
Ji De-yun ◽  
Feng Jian-min ◽  
Liu Zheng-ying ◽  
...  

Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2346 ◽  
Author(s):  
Stanislav Kotsilkov ◽  
Evgeni Ivanov ◽  
Nikolay Vitanov

Nanoparticles of graphene and carbon nanotubes are attractive materials for the improvement of mechanical and barrier properties and for the functionality of biodegradable polymers for packaging applications. However, the increase of the manufacture and consumption increases the probability of exposure of humans and the environment to such nanomaterials; this brings up questions about the risks of nanomaterials, since they can be toxic. For a risk assessment, it is crucial to know whether airborne nanoparticles of graphene and carbon nanotubes can be released from nanocomposites into the environment at their end-life, or whether they remain embedded in the matrix. In this work, the release of graphene and carbon nanotubes from the poly(lactic) acid nanocomposite films were studied for the scenarios of: (i) biodegradation of the matrix polymer at the disposal of wastes; and (ii) combustion and fire of nanocomposite wastes. Thermogravimetric analysis in air atmosphere, transmission electron microscopy (TEM), atomic force microscopy (AFM) and scanning electron microscope (SEM) were used to verify the release of nanoparticles from nanocomposite films. The three factors model was applied for the quantitative and qualitative risk assessment of the release of graphene and carbon nanotubes from nanocomposite wastes for these scenarios. Safety concern is discussed in respect to the existing regulations for nanowaste stream.


Polymer ◽  
2020 ◽  
Vol 188 ◽  
pp. 122121 ◽  
Author(s):  
Jian Zhou ◽  
Ying Zheng ◽  
Guorong Shan ◽  
Yongzhong Bao ◽  
Wen-Jun Wang ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 208 ◽  
Author(s):  
Pietro Russo ◽  
Virginia Venezia ◽  
Fabiana Tescione ◽  
Joshua Avossa ◽  
Giuseppina Luciani ◽  
...  

One of the main issues in preparing polymer-based nanocomposites with effective properties is to achieve a good dispersion of the nanoparticles into the matrix. Chemical interfacial modifications by specific coupling agents represents a good way to reach this objective. Actually, time consuming compatibilization procedures strongly compromise the sustainability of these strategies. In this study, the role of particles’ architectures in their dispersion into a poly-lactic acid matrix and their subsequent influences on physical-chemical properties of the obtained nanocomposites were investigated. Two kinds of silica nanoparticles, “smooth” and “wrinkled,” with different surface areas (≈30 and ≈600 m2/g respectively) were synthesized through a modified Stöber method and used, without any chemical surface pre-treatments, as fillers to produce poly-lactic acid based nanocomposites. The key role played by wrinkled texture in modifying the physical interaction at the polymer-filler interface and in driving composite properties, was investigated and reflected in the final bulk properties. Detailed investigations revealed the presence of wrinkled nanoparticles, leading to (i) an enormous increase of the chain relaxation time, by almost 30 times compared to the neat PLA matrix; (ii) intensification of the shear-thinning behavior at low shear-rates; and (iii) slightly slower thermal degradation of polylactic acid.


Sign in / Sign up

Export Citation Format

Share Document