Fabrication of inverted organic solar cells on stainless steel substrate with electrodeposited and spin coated ZnO buffer layers

2022 ◽  
Vol 0 (0) ◽  
Author(s):  
D. G. K. Kalara Namawardana ◽  
R. M. Geethanjana Wanigasekara ◽  
W. T. M. Aruna P. K. Wanninayake ◽  
K. M. D. Charith Jayathilaka ◽  
Ruwan P. Wijesundera ◽  
...  

Abstract Polymer based organic solar cells (OSCs) are of tremendous interest as suitable candidates for producing clean and renewable energy in recent years. In this study, inverted OSCs on stainless steel (SS) substrate with zinc oxide (ZnO) as the electron selective transport layer (ESTL), are investigated, occupying bulk heterojunction blend of regioregular poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) as the active material and poly-(4,3-ethylene dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the hole transport layer (HTL). The device structure is SS/ZnO/P3HT:PCBM/PEDOT:PSS/Au. ZnO films are prepared by spin coating and electrodeposition techniques, followed by annealing under ambient conditions. The insertion of ZnO layer between the SS substrate and active layer has improved short-circuit current (J sc), open-circuit voltage (V oc), fill factor (FF), and power conversion efficiency (PCE) compared to those of the reference cell without ZnO layer, achieving the highest efficiency of 0.66% for the device with spin coated ZnO from sol–gel technique. This enhancement can be attributed to the effective electron extraction and the increased crystallinity of ZnO after annealing treatments at higher temperatures as further confirmed by X-ray diffraction (XRD) and scanning electron microscope (SEM) analyses.

2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Kulrisa Kuntamung ◽  
Patrawadee Yaiwong ◽  
Chutiparn Lertvachirapaiboon ◽  
Ryousuke Ishikawa ◽  
Kazunari Shinbo ◽  
...  

We studied the effect of gold quantum dots (AuQDs)/grating-coupled surface plasmon resonance (GC-SPR) in inverted organic solar cells (OSCs). AuQDs are located within a GC-SPR evanescent field in inverted OSCs, indicating an interaction between GC-SPR and AuQDs' quantum effects, subsequently giving rise to improvement in the performance of inverted OSCs. The fabricated solar cell device comprises an ITO/TiO 2 /P3HT : PCBM/PEDOT : PSS : AuQD/silver grating structure. The AuQDs were loaded into a hole transport layer (PEDOT : PSS) of the inverted OSCs to increase absorption in the near-ultraviolet (UV) light region and to emit visible light into the neighbouring photoactive layer, thereby achieving light-harvesting improvement of the device. The grating structures were fabricated on P3HT:PCBM layers using a nanoimprinting technique to induce GC-SPR within the inverted OSCs. The AuQDs incorporated within the strongly enhanced GC-SPR evanescent electric field on metallic nanostructures in the inverted OSCs improved the short-circuit current and the efficiency of photovoltaic devices. In comparison with the reference OSC and OSCs with only green AuQDs or only metallic grating, the developed device indicates enhancement of up to 16% power conversion efficiency. This indicates that our light management approach allows for greater light utilization of the OSCs because of the synergistic effect of G-AuQDs and GC-SPR.


2019 ◽  
Vol 288 ◽  
pp. 113-118 ◽  
Author(s):  
Hong Lian ◽  
Ning Jun ◽  
Altan Bolag ◽  
Alata Hexig ◽  
Naren Gerile ◽  
...  

We have investigated the effect of diluting treatment of poly (3,4-ethylenedioxythiophen e):poly (styrene sulfonate)(PEDOT:PSS) solution on the PEDOT:PSS films and the organic polymer solar cells based on poly [4,8-bis (5-(2-ethylhexyl) thiophen-2-yl) benzo [1,2-b;4,5-b0] dithiophene-co-3-fluorothieno [3,4-b] thiophene-2-carboxylate](PTB7-Th):[6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) using PEDOT:PSS polymer as the hole transport layer. The diluted PEDOT:PSS solution by water with 1:1.5 volume ratio was used to fabricate the hole transport layer in the organic solar cell, the fill factor and the shunt resistance of the solar cell can be significantly enhanced compared with the control cell, up to 64% and 949.03Ω·cm2, respectively.


2012 ◽  
Vol 2012 ◽  
pp. 1-7
Author(s):  
Cheng-Chiang Chen ◽  
Lung-Chien Chen

This work presents a flexible organic solar cell with a structure for ITO/PEDOT:PSS/P3HT:PCBM+ruthenium complex sensitizer and Au nanoparticles on a flexible substrate. The process and thickness of the PEDOT:PSS hole transport layer and P3HT:PCBM active layer were optimized. A ruthenium complex sensitizer and Au nanoparticles were then introduced into the P3HT:PCBM active layer to improve the performance of solar cells. For the ITO/PEDOT:PSS/P3HT:PCBM+ruthenium complex sensitizer and Au nanoparticles structure on a flexible polyimide (PI) substrate under 0.1 and 1 sun conditions, the measured short-circuit current density (Jsc), open-circuit voltage (Voc), fill factor (FF), and efficiency (η) are 3.89 and 9.67 mA/cm2, 0.45 and 0.45 V, 0.266 and 0.232, and 4.65 and 1.01%, respectively.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 404
Author(s):  
Abdul Sami ◽  
Arsalan Ansari ◽  
Muhammad Dawood Idrees ◽  
Muhammad Musharraf Alam ◽  
Junaid Imtiaz

Perovskite inorganic-organic solar cells are fabricated as a sandwich structure of mesostructured TiO2 as electron transport layer (ETL), CH3NH3PbI3 as active material layer (AML), and Spiro-OMeTAD as hole transport layer (HTL). The crystallinity, structural morphology, and thickness of TiO2 layer play a crucial role to improve the overall device performance. The randomly distributed one dimensional (1D) TiO2 nanowires (TNWs) provide excellent light trapping with open voids for active filling of visible light absorber compared to bulk TiO2. Solid-state photovoltaic devices based on randomly distributed TNWs and CH3NH3PbI3 are fabricated with high open circuit voltage Voc of 0.91 V, with conversion efficiency (CE) of 7.4%. Mott-Schottky analysis leads to very high built-in potential (Vbi) ranging from 0.89 to 0.96 V which indicate that there is no depletion layer voltage modulation in the perovskite solar cells fabricated with TNWs of different lengths. Moreover, finite-difference time-domain (FDTD) analysis revealed larger fraction of photo-generated charges due to light trapping and distribution due to field convergence via guided modes, and improved light trapping capability at the interface of TNWs/CH3NH3PbI3 compared to bulk TiO2.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Nguyen Nang Dinh ◽  
Do Ngoc Chung ◽  
Tran Thi Thao ◽  
David Hui

Polymeric nanocomposite films from PEDOT and MEH-PPV embedded with surface modified TiO2nanoparticles for the hole transport layer and emission layer were prepared, respectively, for organic emitting diodes (OLEDs). The composite of MEH-PPV+nc-TiO2was used for organic solar cells (OSCs). The characterization of these nanocomposites and devices showed that electrical (I-Vcharacteristics) and spectroscopic (photoluminescent) properties of conjugate polymers were enhanced by the incorporation of nc-TiO2in the polymers. The organic light emitting diodes made from the nanocomposite films would exhibit a larger photonic efficiency and a longer lasting life. For the organic solar cells made from MEH-PPV+nc-TiO2composite, a fill factor reached a value of about 0.34. Under illumination by light with a power density of 50 mW/cm2, the photoelectrical conversion efficiency was about 0.15% corresponding to an open circuit voltageVoc= 0.126 V and a shortcut circuit current densityJsc= 1.18 mA/cm2.


2021 ◽  
Author(s):  
Irfan Qasim ◽  
Owais Ahmad ◽  
Asim Rashid ◽  
Tashfeen Zehra ◽  
Muhammad Imran Malik ◽  
...  

Abstract Solar energy is found to be low cost and abundant of all available energy resources and needs exploration of highly efficient devices for global energy requirements. We have investigated methyl ammonium tin halide (CH3NH3SnI3)-based perovskite solar cells (PSCs) for optimized device performance using solar capacitance simulator SCAPS-1D software. This study is a step forward towards availability of stable and non-toxic solar cells. We explored all necessary parameters such as metal work functions, thickness of absorber and buffer layers, charge carrier’s mobility and defect density for improved device performance. Calculations revealed that for the best efficiency of device the maximum thickness of the perovskite absorber layer must be 4.2 μm. Furthermore, optimized thickness values of (ZnO=0.01 μm) as electron transport layer (ETL), GaAs as hole transport layer (HTL=3.02 μm) and (CdS=10 nm) and buffer layer have provided power conversion efficiency (PCE) of 23.53%. Variation of open circuit voltage (Voc), Short circuit current (Jsc), Fill Factor (FF%) and quantum efficiency against thickness of all layers in FTO/ZnO/CdS/CH3NH3SnI3/GaAs/Au compositions have been critically explored and reported. Interface defects and defect density in different inserted layers have also been reported in this study as they can play a crucial for the device performance. Insertion of ZnO layer and CdS buffer layers have shown improved device performance and PCE. Current investigations may prove to be useful for designing and fabrication of climate friendly, non-toxic and highly efficient solar cells.


2D Materials ◽  
2021 ◽  
Author(s):  
Jianxiao Wang ◽  
Le Liu ◽  
Min Zhao ◽  
Chenyu Han ◽  
Xichang Bao ◽  
...  

2012 ◽  
Vol 9 (5) ◽  
pp. 399-406
Author(s):  
Do Chung ◽  
Nguyen Dinh ◽  
Tran Thao ◽  
Nguyen Nam ◽  
Tran Trung ◽  
...  

Polymeric nanocomposite films from PEDOT and MEH-PPV embedded with surface modified TiO2 nanoparticles were prepared, respectively for the hole transport layer (HTL) and emission layer (EL) in Organic Light Emitting Diodes (OLED). The composite of MEH-PPV + nc-TiO2 was used for Organic Solar Cells (OCS). The results from the characterization of the properties of the nanocomposites and devices showed that electrical (I-V characteristics) and spectroscopic (photoluminescent) properties of the conjugate polymers were enhanced due to the incorporation of nc-TiO2 in the polymers. The OLEDs made from the nanocomposite films would exhibit a larger photonic efficiency and a longer lasting life. For the OSC made from MEH-PPV + nc-TiO2 composite, the fill factor (FF) reached a value as high as 0.34. Under illumination of light with a power density of 50 mW/cm2, the photoelectrical conversion efficiency (PEC) was found to be of 0.15% corresponding to an open circuit voltage VOC = 1.15 V and a short-cut circuit current density JSC = 0.125 mA/cm2.


Coatings ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 354
Author(s):  
Shaoxi Wang ◽  
He Guan ◽  
Yue Yin ◽  
Chunfu Zhang

With the continuous development of solar cells, the perovskite solar cells (PSCs), whose hole transport layer plays a vital part in collection of photogenerated carriers, have been studied by many researchers. Interface transport layers are important for efficiency and stability enhancement. In this paper, we demonstrated that lithium (Li) and cobalt (Co) codoped in the novel inorganic hole transport layer named NiOx, which were deposited onto ITO substrates via solution methods at room temperature, can greatly enhance performance based on inverted structures of planar heterojunction PSCs. Compared to the pristine NiOx films, doping a certain amount of Li and Co can increase optical transparency, work function, electrical conductivity and hole mobility of NiOx film. Furthermore, experimental results certified that coating CH3NH3PbIxCl3−x perovskite films on Li and Co- NiOx electrode interlayer film can improve chemical stability and absorbing ability of sunlight than the pristine NiOx. Consequently, the power conversion efficiency (PCE) of PSCs has a great improvement from 14.1% to 18.7% when codoped with 10% Li and 5% Co in NiOx. Moreover, the short-circuit current density (Jsc) was increased from 20.09 mA/cm2 to 21.7 mA/cm2 and the fill factor (FF) was enhanced from 0.70 to 0.75 for the PSCs. The experiment results demonstrated that the Li and Co codoped NiOx can be a effective dopant to improve the performance of the PSCs.


Sign in / Sign up

Export Citation Format

Share Document