scholarly journals Weak-value amplification: state of play

Author(s):  
George C. Knee ◽  
Joshua Combes ◽  
Christopher Ferrie ◽  
Erik M. Gauger

AbstractWeak values arise in quantum theory when the result of a weak measurement is conditioned on a subsequent strong measurement. The majority of the trials are discarded, leaving only very few successful events. Intriguingly those can display a substantial signal amplification. This raises the question of whether weak values carry potential to improve the performance of quantum sensors, and indeed a number of impressive experimental results suggested this may be the case. By contrast, recent theoretical studies have found the opposite: using weak-values to obtain an amplification generally worsens metrological performance. This survey summarises the implications of those studies, which call for a reappraisal of weak values’ utility and for further work to reconcile theory and experiment.

The theory of paramagnetism, originally developed by Langevin (1905) and extended by Weiss (1907) to include ferromagnetics, led to expressions giving the variation of magnetization with temperature above and below the Curie point. These proved of great value in correlating experimental results, and the general agreement between theory and experiment leaves no doubt of the essential correctness of the ideas involved. However, with the introduction of the quantum theory, the nature of the elementary carriers of magnetic moment became apparent, and new values of atomic moments were calculated from the variation of susceptibility with temperature above the Curie point. The chief problem has been to reconcile these with the values more directly measured at low temperatures. Whilst the saturation intensities of the three ferromagnetics–iron, cobalt and nickel—are known with reasonable certainty, the susceptibility measurements of several workers on iron and cobalt show such large discrepancies that, except for nickel, the theoretical development has been considerably hampered by lack of sufficiently accurate data.


Quantum ◽  
2019 ◽  
Vol 3 ◽  
pp. 194 ◽  
Author(s):  
Alastair A. Abbott ◽  
Ralph Silva ◽  
Julian Wechs ◽  
Nicolas Brunner ◽  
Cyril Branciard

A weak measurement performed on a pre- and post-selected quantum system can result in an average value that lies outside of the observable's spectrum. This effect, usually referred to as an ``anomalous weak value'', is generally believed to be possible only when a non-trivial post-selection is performed, i.e., when only a particular subset of the data is considered. Here we show, however, that this is not the case in general: in scenarios in which several weak measurements are sequentially performed, an anomalous weak value can be obtained without post-selection, i.e., without discarding any data. We discuss several questions that this raises about the subtle relation between weak values and pointer positions for sequential weak measurements. Finally, we consider some implications of our results for the problem of distinguishing different causal structures.


Laser Physics ◽  
2021 ◽  
Vol 31 (9) ◽  
pp. 095201
Author(s):  
Yurong Liu ◽  
Zhaoxue Li ◽  
Yucheng Ye ◽  
Junhao Ye ◽  
Zhiyou Zhang

2020 ◽  
Vol 5 (3) ◽  
pp. 191-213
Author(s):  
Niladri Modak ◽  
Ankit K. Singh ◽  
Shyamal Guchhait ◽  
Athira BS ◽  
Mandira Pal ◽  
...  

Background: Weak measurement involves weak coupling between the system and the measuring device (pointer) enables large amplification and high precision measurement of small physical parameters. The outcome of this special measurement procedure involving nearly mutually orthogonal pre- and post-selection of states in such weakly interacting systems leads to weak value that can become exceedingly large and lie outside the eigenvalue spectrum of the measured observable. This unprecedented ability of weak value amplification of small physical parameters has been successfully exploited for various metrological applications in the optical domain and beyond. Even though it is a quantum mechanical concept, it can be understood using the classical electromagnetic theory of light and thus can be realized in classical optics. Objective: Here, we briefly review the basic concepts of weak measurement and weak value amplification, provide illustrative examples of its implementation in various optical domains. The applications involve measuring ultra-sensitive beam deflections, high precision measurements of angular rotation, phase shift, temporal shift, frequency shift and so forth, and expand this extraordinary concept in the domain of nano-optics and plasmonics. Methods: In order to perform weak value amplification, we have used Gaussian beam and spectral response as the pointer subsequently. The polarization state associated with the pointer is used as pre and post-selection device. Results: We reveal the weak value amplification of sub-wavelength optical effects namely the Goos-Hänchen shift and the spin hall shift. Further, we demonstrate weak measurements using spectral line shape of resonance as a natural pointer, enabling weak value amplification beyond the conventional limit, demonstrating natural weak value amplification in plasmonic Fano resonances and so forth. The discussed concepts could have useful implications in various nano-optical systems to amplify tiny signals or effects. Conclusion: The emerging prospects of weak value amplification towards the development of novel optical weak measurement devices for metrological applications are extensively discussed.


2021 ◽  
Vol 126 (22) ◽  
Author(s):  
Courtney Krafczyk ◽  
Andrew N. Jordan ◽  
Michael E. Goggin ◽  
Paul G. Kwiat

1993 ◽  
Vol 115 (4) ◽  
pp. 427-435 ◽  
Author(s):  
K. Gupta ◽  
K. D. Gupta ◽  
K. Athre

A dual rotor rig is developed and is briefly discussed. The rig is capable of simulating dynamically the two spool aeroengine, though it does not physically resemble the actual aeroengine configuration. Critical speeds, mode shape, and unbalance response are determined experimentally. An extended transfer matrix procedure in complex variables is developed for obtaining unbalance response of dual rotor system. Experimental results obtained are compared with theoretical results and are found to be in reasonable agreement.


The perturbation treatment of the orientational forces between non-spherical molecules proposed by Cook & Rowlinson (1953) is extended to mixtures by using the theory of solutions put forward by Longuet-Higgins (1951). The thermodynamic functions and the equation of state of such mixtures are expressed in terms of the intermolecular forces and the properties of one pure component. Expressions are derived for the excess (or non-ideal) thermodynamic functions which are compared with the experimental results on the four solutions, benzene+ cyclohexane , benzene+carbon tetrachloride, benzene + ethylene dychloride, and cyclohexane + carbon tetrachloride. The agreement between theory and experiment is improved by taking account of the orientational forces.


2017 ◽  
Vol 84 (11) ◽  
Author(s):  
Guoyong Mao ◽  
Lei Wu ◽  
Xueya Liang ◽  
Shaoxing Qu

Wrinkles widely existing in sheets and membranes have attracted a lot of attention in the fields of material science and engineering applications. In this paper, we present a new method to generate ordered (striplike) and steady wrinkles of a constrained dielectric elastomer (DE) sheet coated with soft electrodes on both sides subjected to high voltage. When the voltage reaches a certain value, wrinkles will nucleate and grow. We conduct both experimental and theoretical studies to investigate the wavelength and amplitude of the wrinkle. The results show a good agreement between theory and experiment. Moreover, the amplitude and wavelength of ordered wrinkles can be tuned by varying the prestretch and geometry of the DE sheet, as well as the applying voltage. This study can help future design of DE transducers such as diffraction grating and optical sensor.


Sign in / Sign up

Export Citation Format

Share Document