Production and study of chemical properties of superheavy elements

2019 ◽  
Vol 107 (7) ◽  
pp. 587-602 ◽  
Author(s):  
Christoph E. Düllmann

Abstract Some highlight examples on the study of production and chemical properties of heaviest elements carried out mostly at GSI Darmstadt are presented. They focus on the production of some of the heaviest known elements (114Fl, 115Mc, and 117Mc), studies of non-fusion reactions, and on chemical studies of 114Fl. This is the heaviest element, for which chemical studies have been performed to date.

2019 ◽  
Vol 107 (9-11) ◽  
pp. 833-863 ◽  
Author(s):  
Valeria Pershina

AbstractTheoretical chemical studies demonstrated crucial importance of relativistic effects in the physics and chemistry of superheavy elements (SHEs). Performed, with many of them, in a close link to the experimental research, those investigations have shown that relativistic effects determine periodicities in physical and chemical properties of the elements in the chemical groups and rows of the Periodic Table beyond the 6thone. They could, however, also lead to some deviations from the established trends, so that the predictive power of the Periodic Table in this area may be lost. Results of those studies are overviewed here, with comparison to the recent experimental investigations.


2021 ◽  
pp. 16-21

The purpose of this study is study of the physical and chemical properties of the overburden of the Dzherdanak deposit. The chemical and mineralogical composition of the overburden of the Djerdanak deposit has been studied by the methods of X-ray and thermography, electron microscopy and infrared spectroscopy. The main phases are quartz, kaolinite and muscovite. The study of the fine structure of the rock under an electron microscope showed the homogeneity of the rock with pronounced uniform inclusions, which is preserved even after firing. Changes in the rock after firing at 1050 °C have been determined. The formation of mullite at this temperature has been established.


2019 ◽  
Vol 107 (9-11) ◽  
pp. 865-877 ◽  
Author(s):  
Robert Eichler

Abstract The fundamental principles of the periodic table guide the research and development of the challenging experiments with transactinide elements. This guidance is elucidated together with experimental results from gas phase chemical studies of the transactinide elements with the atomic numbers 104–108 and 112–114. Some deduced chemical properties of these superheavy elements are presented here in conjunction with trends established by the periodic table. Finally, prospects are presented for further chemical investigations of transactinides based on trends in the periodic table.


Vestnik RFFI ◽  
2019 ◽  
pp. 87-104
Author(s):  
Yuri Ts. Oganessian

In the sixties of the XX century, the possibility of existence of the region of increased stability of superheavy nuclei in the vicinity of Z | 114 and N | 184 was proved. For the first time a successful synthesis of superheavy elements was carried out in the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research (JINR). Superheavy elements of D.I. Mendeleev Periodic Table of the Elements with atomic numbers 114–118 were synthesized in the fusion reactions of the nuclei of the transuranic elements with calcium-48 nuclei. The article deals with the choice of reactions for the synthesis of new elements, methods of studying their nuclear-physical and chemical properties. The experimental complex “Factory of superheavy elements” created in JINR and prospects of further research development are described.


Author(s):  
T.C. Tso ◽  
D. Hoffmann ◽  
G Rathkamp

AbstractSimple correlation and multiple regressions among 160 variables of leaf characteristics and smoke constituents were calculated, based on experimental cigarettes made from 4 cultivars of bright-type tobacco, each from 8 stalk positions. Smoke composition is a function of the botanical, physical, and chemical properties of leaf tobacco used to make the cigarette. Detailed simple correlation data, multiple-regression equations, and expressions of variety and stalk position as factors of TPM and BaP formation are presented.


Author(s):  
Yu. Ts. Oganessian

Synthesis of superheavy elements predicted by microscopic nuclear theory is investigated. The heaviest elements with Z = 114–118 were synthesized by fusion reactions of actinide nuclei with 48Ca ions accelerated using the U-400 complex at the Flerov Laboratory of Nuclear Reactions (FLNR), one of seven laboratories that comprise the Joint Institute for Nuclear Research (JINR) located in Dubna, Russia. The experiments were carried out in collaboration with physicists and chemists working at the Livermore and Oak Ridge national laboratories in located in California and Tennessee, respectively. Discovery of these elements allowed completion of the seventh period of the periodic table. The microscopic nuclear theory’s fundamental predictions about the possible existence of superheavy elements received the experimental confirmation. A new laboratory, i.e., the "STE Factory" associated with the JINR FLNR, has been established to research superheavy nuclei.


Sign in / Sign up

Export Citation Format

Share Document