Review and selection criteria of classical thermodynamic models for acid gas absorption in aqueous alkanolamines

2015 ◽  
Vol 31 (6) ◽  
Author(s):  
Humbul Suleman ◽  
Abdulhalim Shah Maulud ◽  
Zakaria Man

AbstractThe knowledge of vapour-liquid equilibrium (VLE) and thermodynamic properties plays a pivotal role in the process development of absorption systems for acid gas capture in precombustion and postcombustion streams. A large number of thermodynamic modelling approaches for acid gas absorption in aqueous alkanolamine solutions are published in the literature. However, the reviews of these modelling techniques are limited and scattered. Moreover, poor guidelines exist for the selection of an appropriate modelling approach for the VLE prediction of the aforementioned system. Therefore, the current study presents a concise classification and review of classical thermodynamic models for acid gas absorption in aqueous alkanolamine solutions since their inception. The article systematically details the chronological development and highlights the major capabilities and limitations of classical thermodynamic approaches, namely, semiempirical models, activity coefficient models, and equation of state (and equation of state/excess Gibbs energy) models. A graphical comparison of VLE prediction by each classical approach is presented to form a general guideline in the selection of a suitable approach for process development studies. The review precisely discusses the issues, challenges, and future prospects of each classical thermodynamic approach in the context of application, complexity, and development.

2021 ◽  
Author(s):  
Victoria Kamnetochi IKPEZE ◽  
John Olusoji OWOLABI ◽  
Idowu Iyabo OLATEJU ◽  
Abdulwahab GIWA

Abstract This work has been carried out to model and simulate a typical acid gas absorption process using Aspen HYSYS process simulator. The chemical components involved in the process development were water, methane, ethane, propane, higher alkanes, carbon dioxide, hydrogen sulphide, nitrogen and amines: monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA) and methyldiethanolamine (MDEA). The fluid package selected for the simulation before entering the simulation environment was Acid Gas – Chemical Solvents. In the simulation environment, the model was developed by picking an absorber from the Model Palette, placing it and assigning the input and the output streams involved before inputting the parameters required for model convergence. The carbon dioxide-rich feed gas was made to enter the absorber at the bottom inlet stream while the lean amine stream entered at the top inlet and showered down on the uprising gas thereby trapping the carbon dioxide molecules within the gas. The top product from the absorber was the treated gas while the amine solution and the trapped carbon dioxide left the absorber as the bottom product. Different simulations were run to investigate the performance of the amines under the same operating conditions. It was discovered that, of all the four amine solvents considered in this work for the removal of carbon dioxide by chemical absorption, MEA had the highest efficiency but would require more dehydration because it had the highest water content. DEA was also found to scrub the carbon dioxide down to acceptable levels. However, TEA and MDEA barely scrubbed any carbon dioxide under these conditions, as their carbon dioxide compositions were found to be unacceptable. The analyses of the results obtained from the simulations indicated that Aspen HYSYS can be used to study the process of acid gas absorption successfully.


ACS Omega ◽  
2021 ◽  
Author(s):  
Nasrin Salimi Darani ◽  
Reza Mosayebi Behbahani ◽  
Yasaman Shahebrahimi ◽  
Afshin Asadi ◽  
Amir H. Mohammadi

2021 ◽  
Author(s):  
Oluwakemi Victoria Eniolorunda ◽  
Antonin Chapoy ◽  
Rod Burgass

Abstract In this study, new experimental data using a reliable approach are reported for solid-fluid phase equilibrium of ternary mixtures of Methane-Carbon-dioxide- n-Hexadecane for 30-73 mol% CO2 and pressures up to 24 MPa. The effect of varying CO2 composition on the overall phase transition of the systems were investigated. Three thermodynamic models were used to predict the liquid phase fugacity, this includes the Peng Robison equation of state (PR-EoS), Soave Redlich-Kwong equation of state (SRK-EoS) and the Cubic plus Association (CPA) equation of state with the classical mixing rule and a group contribution approach for calculating binary interaction parameters in all cases. To describe the wax (solid) phase, three activity coefficient models based on the solid solution theory were investigated: the predictive universal quasichemical activity coefficients (UNIQUAC), Universal quasi-chemical Functional Group activity coefficients (UNIFAC) and the predictive Wilson approach. The solid-fluid equilibria experimental data gathered in this experimental work including those from saturated and under-saturated conditions were used to check the reliability of the various phase equilibria thermodynamic models.


1974 ◽  
Vol 27 (3) ◽  
pp. 647 ◽  
Author(s):  
DV Fenby ◽  
NF Pasco

There has recently been a revival of interest in theories of liquid mixtures based on analytic equations of state for pure fluids. We have shown that the method used to determine the parameters of the pure-liquid equation of state has a significant effect on the excess thermodynamic properties obtained from such theories.


Author(s):  
Aleksey N. Vasiliev ◽  
V.P. Goryachkina ◽  
Dmitry Budnikov

Studying the effect of microwave fields on the intensification of heat and moisture exchange processes in a granular layer is a rather complicated task, which cannot be effectively solved without an adequate research methodology. In presented materials, a system of principles and approaches for studying processes of microwave-convective grain treatment has been discussed. Based on the explicitly defined process target, functional-physical analysis has been performed that made it possible to specify the most essential factors of process. Morphological analysis of processes shall be performed in several stages. At each stage, targets of process have to be set by excluding combinations of factors that have no reason to be considered at this particular stage of process development. Application of mathematical simulation methods is advisable for selection of optimal options.


2019 ◽  
Vol 11 (3) ◽  
pp. 771-799 ◽  
Author(s):  
K. F. Fung ◽  
Y. F. Huang ◽  
C. H. Koo ◽  
Y. W. Soh

Abstract Droughts are prolonged precipitation-deficient periods, resulting in inadequate water availability and adverse repercussions to crops, animals and humans. Drought forecasting is vital to water resources planning and management in minimizing the negative consequences. Many models have been developed for this purpose and, indeed, it would be a long process for researchers to select the best suited model for their research. A timely, thorough and informative overview of the models' concepts and historical applications would be helpful in preventing researchers from overlooking the potential selection of models and saving them considerable amounts of time on the problem. Thus, this paper aims to review drought forecasting approaches including their input requirements and performance measures, for 2007–2017. The models are categorized according to their respective mechanism: regression analysis, stochastic, probabilistic, artificial intelligence based, hybrids and dynamic modelling. Details of the selected papers, including modelling approaches, authors, year of publication, methods, input variables, evaluation criteria, time scale and type of drought are tabulated for ease of reference. The basic concepts of each approach with key parameters are explained, along with the historical applications, benefits and limitations of the models. Finally, future outlooks and potential modelling techniques are furnished for continuing drought research.


Sign in / Sign up

Export Citation Format

Share Document