Solid-Fluid Phase Equilibria Measurement for Mixtures of Methane, Carbon-Dioxide and N-Hexadecane

2021 ◽  
Author(s):  
Oluwakemi Victoria Eniolorunda ◽  
Antonin Chapoy ◽  
Rod Burgass

Abstract In this study, new experimental data using a reliable approach are reported for solid-fluid phase equilibrium of ternary mixtures of Methane-Carbon-dioxide- n-Hexadecane for 30-73 mol% CO2 and pressures up to 24 MPa. The effect of varying CO2 composition on the overall phase transition of the systems were investigated. Three thermodynamic models were used to predict the liquid phase fugacity, this includes the Peng Robison equation of state (PR-EoS), Soave Redlich-Kwong equation of state (SRK-EoS) and the Cubic plus Association (CPA) equation of state with the classical mixing rule and a group contribution approach for calculating binary interaction parameters in all cases. To describe the wax (solid) phase, three activity coefficient models based on the solid solution theory were investigated: the predictive universal quasichemical activity coefficients (UNIQUAC), Universal quasi-chemical Functional Group activity coefficients (UNIFAC) and the predictive Wilson approach. The solid-fluid equilibria experimental data gathered in this experimental work including those from saturated and under-saturated conditions were used to check the reliability of the various phase equilibria thermodynamic models.

1981 ◽  
Vol 21 (05) ◽  
pp. 535-550 ◽  
Author(s):  
S.T. Lee ◽  
R.H. Jacoby ◽  
W.H. Chen ◽  
W.E. Culham

Abstract Experimental phase equilibrium data are presented for three reservoir oils at conditions approximating those encountered in in-situ thermal recovery processes. The fluid systems involved consist of three major groups of components: flue gas, water, and crude oil. Data were measured at temperatures from 204.4 to 371.1°C (400 to 700°F) and pressures from 6996.0 to 20785.6 kPa (1,000 to 3,000 psia). Experimental phase equilibrium data were used to develop a correlation of binary interaction coefficients of crude-oil fractions required for the Peng-Robinson equation of state. Phase equilibrium data predicted using the Peng-Robinson equation of state, using our interaction coefficients, are compared with experimental data. Generally, the Peng-Robinson equation of state predictions were in close agreement with the experimental data. Effect of feed gas/oil ratio and water/oil ratio on the equilibrium coefficients was examined through the Peng-Robinson equation of state. A study on the feasibility of representing the crude oil by only two fractions was made also. This study includes a procedure for lumping the crude-oil fractions and examples showing the importance of mixing rules in determining the pseudo critical properties of lumped fractions. Introduction The steady growth of commercial thermal recovery processes1 has created a need for basic data on phase equilibria that involve water and hydrocarbons ranging from methane to high boiling-point fractions. The in-situ thermal recovery processes often are operated at pressures above 6800 kPa (1,000 psia) and temperatures above 200°C (400°F). Experimental data and theoretical correlations on phase equilibria approximating these systems are virtually nonexistent. Early work by White and Brown2 dealt with high boiling-point hydrocarbon phase equilibria. However, the highest pressure studied was 6894.8 kPa (1,000 psia) and the lightest component was pentane. Poettmann and Mayland,3 on the basis of an empirical correlation,4 constructed charts of equilibrium coefficients, or K values, as functions of pressure and temperature for various boiling-point fractions. But the maximum pressure studied was 6894.8 kPa (1,000 psia). Later, Hoffmann et al.5 studied phase behavior of a gas-condensate system with the highest pressure reaching 20 684.3 kPa (3,000 psia) but the highest temperature investigated was only 94.2°C (201°F). In 1963, Grayson and Streed6 reported experimental vapor/liquid equilibrium data for high-temperature and high-pressure hydrocarbon systems. They also extended the Chao-Seader correlation to cover the higher temperature ranges. However, the. major light component in Grayson and Streed's system was hydrogen. Recently, because of the increasing activity in carbon dioxide flooding processes, the phase equilibria of systems involving carbon dioxide and crude oil has received attention. Simon et al.7 studied phase behavior and other properties of carbon-dioxide/reservoir-oil systems. Shelton and Yarborough8 examined phase behavior in porous media during carbon dioxide or rich-gas flooding. No extensive data on equilibrium coefficients were reported in those papers, and the temperature ranges (out of physical reality) were below 93.5°C (200°F). None of these papers surveyed included water as a component.


Sign in / Sign up

Export Citation Format

Share Document