Supercritical water gasification: a patents review

2017 ◽  
Vol 33 (3) ◽  
Author(s):  
Pau Casademont ◽  
M. Belén García-Jarana ◽  
Jezabel Sánchez-Oneto ◽  
Juan Ramón Portela ◽  
Enrique J. Martínez de la Ossa

AbstractSupercritical water gasification (SCWG) is a very recent technology that allows conversion of organic wastewaters into a fuel gas with a high content of hydrogen and light hydrocarbons. SCWG involves the treatment of organic compounds at conditions higher than those that define the critical point of water (temperature of 374°C and pressure of 221 bar). This hydrothermal process, normally operated at temperatures from 400 to 650°C and pressures from 250 to 350 bar, produces a gas effluent with a high hydrogen content. SCWG is considered a promising technology for the efficient conversion of organic wastewaters, mainly wet biomass, into fuel gas. This technology has received extensive worldwide attention, and many research groups have studied the effect of operation conditions, reaction mechanisms, kinetics, etc. There are some recent reviews about the research works carried out in the last decades, but there is no information or analysis of almost 100 patents registered in relation with this new technology. A revision of the current status of SCWG patents and technologies has been completed based on the Espacenet patent database. The objective of this revision was to set down the new perspectives toward the improvement of this technology efficiency. Patents have been published with regard to process or device improvements as well as to the use of different catalysts. More than 71% of these patents were published since 2009, and a substantial climb in the number of patents on SCWG is expected in the coming years. One of the most important aspects where research is particularly interesting if the integration of renewable energy recovery systems with SCWG processes.

2021 ◽  
Vol 5 (5) ◽  
pp. 1521-1537
Author(s):  
Elyas M. Moghaddam ◽  
Avishek Goel ◽  
Marcin Siedlecki ◽  
Karin Michalska ◽  
Onursal Yakaboylu ◽  
...  

Supercritical Water Gasification is a promising approach to convert biogenic residues such as cattle manure, fruit/vegetable waste, and cheese whey into valuable biofuels.


Holzforschung ◽  
2015 ◽  
Vol 69 (6) ◽  
pp. 751-760 ◽  
Author(s):  
Marion Huet ◽  
Anne Roubaud ◽  
Dominique Lachenal

Abstract Supercritical water gasification of weak sulfur-free black liquor (BL) was performed in a batch autoclave at temperatures between 430°C and 470°C, pressure between 24 and 27 MPa and residence time between 2 and 63 min. Results show that the gas produced was a mixture of mainly hydrogen, methane, and carbon dioxide. Maximum conversion was achieved at 470°C and 60 min. Energy recovery (ER, ratio between the energy in the gas and in the initial BL) was 46%. Thirty-four percent of the carbon and 53% of the hydrogen initially present in BL were converted into gases. Nearly 15% of initial organic carbon remains in the liquid phase and consists mainly of phenolic compounds, which are stable under those conditions. A higher temperature is needed to convert all the organic carbon. Thermodynamic equilibrium should be reached at 700°C leading to a complete conversion and a better efficiency. Sodium recovery is close to typical kraft recovery value and compatible with causticizing.


Author(s):  
Yukihiko Matsumura ◽  
Shuhei Inoue ◽  
Takahito Inoue ◽  
Yoshifumi Kawai ◽  
Takashi Noguchi ◽  
...  

Author(s):  
Niloufar Ghavami ◽  
Karhan Özdenkçi ◽  
Gabriel Salierno ◽  
Margareta Björklund-Sänkiaho ◽  
Cataldo De Blasio

AbstractBiomass is often referred to as a carbon–neutral energy source, and it has a role in reducing fossil fuel depletion. In addition, biomass can be converted efficiently into various forms of biofuels. The biomass conversion processes involve several thermochemical, biochemical, and hydrothermal methods for biomass treatment integration. The most common conversion routes to produce biofuels include pyrolysis and gasification processes. On the other hand, supercritical water gasification (SCWG) and hydrothermal liquefaction (HTL) are best suitable for converting biomass and waste with high moisture content. Despite promising efficiencies, SCWG and HTL processes introduce operational issues as obstacles to the industrialization of these technologies. The issues include process safety aspects due to operation conditions, plugging due to solid deposition, corrosion, pumpability of feedstock, catalyst sintering and deactivation, and high production costs. The methods to address these issues include various reactor configurations to avoid plugging and optimizing process conditions to minimize other issues. However, there are only a few studies investigating the operational issues as the main scope, and reviews are seldomly available in this regard. Therefore, further research is required to address operational problems. This study reviews the main operational problems in SCWG and HTL. The objective of this study is to enhance the industrialization of these processes by investigating the operational issues and the potential solutions, i.e., contributing to the elimination of the obstacles. A comprehensive study on the operational issues provides a holistic overview of the biomass conversion technologies and biorefinery concepts to promote the industrialization of SCWG and HTL.


Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2708 ◽  
Author(s):  
Farzaneh

This paper proposes an innovative hydrogen-based hybrid renewable energy system (HRES), which can be used to provide electricity, heat, hydrogen, and water to the small community in remote areas. The HRES introduced in this study is based on the integration of solar power generation, hydrogen generation from supercritical water gasification (SCWG) of wet biomass feedstock, hydrogen generation from solar water electrolysis, and a fuel cell to convert hydrogen to electricity and heat. The wet biomass feedstock contains aqueous sludge, kitchen waste, and organic wastewater. A simulation model is designed and used to investigate the control strategy for the hydrogen and electricity management through detailed size estimation of the system to meet the load requirements of a selected household area, including ten detached houses in a subject district around the Shinchi station located in Shinchi-machi, Fukushima prefecture, Japan. As indicated by results, the proposed HRES can generate about 47.3 MWh of electricity and about 2.6 ton of hydrogen per annum, using the annual wet biomass consumption of 98 tons, with a Levelized Cost of Energy (electricity and heat) of the system at 0.38 $/kWh. The implementation of the proposed HRES in the selected residential area has GHG emissions reduction potential of about 21 tons of CO2-eq per year.


Sign in / Sign up

Export Citation Format

Share Document