Universal modification of vector weighted method of correlated sampling with finite computational cost

Author(s):  
Ilya N. Medvedev

Abstract The weighted method of dependent trials or weighted method of correlated sampling (MCS) allows one to construct estimators for functionals based on the same Markov chain simultaneously for a given range of the problem parameters. Choosing an appropriate Markov chain, it is necessary to take into account additional conditions providing the finiteness of the computational cost of weighted MCS. In this paper we study the issue of finite computational cost of the method of correlated sampling (MCS) in application to evaluation of linear functionals of solutions to a set of systems of 2nd kind integral equations. A universal modification of the vector weighted MCS is constructed providing the branching of chain trajectory according to elements of matrix weights. It is proved that the computational cost of the constructed algorithm is bounded in the case the base functionals are also bounded. The results of numerical experiments using the modified weighted estimator are presented for some problems of the theory of radiation transfer subject to polarization.

Author(s):  
Ilia N. Medvedev

AbstractThe issues of finite computational cost of some vector weighted Monte Carlo algorithms are studied in the paper relative to estimation of linear functionals of solutions to systems of the 2nd kind integral equations. A universal modification of the weight vector collision estimator with branching of the chain trajectory relative to the elements of matrix weight is constructed. It is proved that the computational cost of the constructed algorithm is finite in the case when the basic functionals are bounded. The results of numerical calculations are presented for the case of use of a modified weight estimator for some problems of the radiation transfer theory with allowance for polarization.


2021 ◽  
Vol 40 (3) ◽  
Author(s):  
Qiumei Huang ◽  
Min Wang

AbstractIn this paper, we discuss the superconvergence of the “interpolated” collocation solutions for weakly singular Volterra integral equations of the second kind. Based on the collocation solution $$u_h$$ u h , two different interpolation postprocessing approximations of higher accuracy: $$I_{2h}^{2m-1}u_h$$ I 2 h 2 m - 1 u h based on the collocation points and $$I_{2h}^{m}u_h$$ I 2 h m u h based on the least square scheme are constructed, whose convergence order are the same as that of the iterated collocation solution. Such interpolation postprocessing methods are much simpler in computation. We further apply this interpolation postprocessing technique to hybrid collocation solutions and similar results are obtained. Numerical experiments are shown to demonstrate the efficiency of the interpolation postprocessing methods.


2022 ◽  
Vol 40 ◽  
pp. 1-11
Author(s):  
Parviz Darania ◽  
Saeed Pishbin

In this note, we study a class of multistep collocation methods for the numerical integration of nonlinear Volterra-Fredholm Integral Equations (V-FIEs). The derived method is characterized by a lower triangular or diagonal coefficient matrix of the nonlinear system for the computation of the stages which, as it is known, can beexploited to get an efficient implementation. Convergence analysis and linear stability estimates are investigated. Finally numerical experiments are given, which confirm our theoretical results.


Author(s):  
Sergey M. Ermakov ◽  
◽  
Maxim G. Smilovitskiy ◽  

Monte-Carlo approach towards solving Cauchy problem for large systems of linear differential equations is being proposed in this paper. Firstly, a quick overlook of previously obtained results from applying the approach towards Fredholm-type integral equations is being made. In the main part of the paper, a similar method is being applied towards a linear system of ODE. It is transformed into an equivalent system of Volterra-type integral equations, which relaxes certain limitations being present due to necessary conditions for convergence of majorant series. The following theorems are being stated. Theorem 1 provides necessary compliance conditions that need to be imposed upon initial and transition distributions of a required Markov chain, for which an equality between estimate’s expectation and a desirable vector product would hold. Theorem 2 formulates an equation that governs estimate’s variance, while theorem 3 states a form for Markov chain parameters that minimise the variance. Proofs are given, following the statements. A system of linear ODEs that describe a closed queue made up of ten virtual machines and seven virtual service hubs is then solved using the proposed approach. Solutions are being obtained both for a system with constant coefficients and time-variable coefficients, where breakdown intensity is dependent on t. Comparison is being made between Monte-Carlo and Rungge Kutta obtained solutions. The results can be found in corresponding tables.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
H. Bin Jebreen

We develop the multiwavelet Galerkin method to solve the Volterra–Fredholm integral equations. To this end, we represent the Volterra and Fredholm operators in multiwavelet bases. Then, we reduce the problem to a linear or nonlinear system of algebraic equations. The interesting results arise in the linear type where thresholding is employed to decrease the nonzero entries of the coefficient matrix, and thus, this leads to reduction in computational efforts. The convergence analysis is investigated, and numerical experiments guarantee it. To show the applicability of the method, we compare it with other methods and it can be shown that our results are better than others.


2019 ◽  
Vol 22 (04) ◽  
pp. 1950009
Author(s):  
XIN-JIANG HE ◽  
SONG-PING ZHU

In this paper, the pricing problem of variance and volatility swaps is discussed under a two-factor stochastic volatility model. This model can be treated as a two-factor Heston model with one factor following the CIR process and another characterized by a Markov chain, with the motivation originating from the popularity of the Heston model and the strong evidence of the existence of regime switching in real markets. Based on the derived forward characteristic function of the underlying price, analytical pricing formulae for variance and volatility swaps are presented, and numerical experiments are also conducted to compare swap prices calculated through our formulae and those obtained under the Heston model to show whether the introduction of the regime switching factor would lead to any significant difference.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
H. Bin Jebreen

A novel and efficient numerical method is developed based on interpolating scaling functions to solve 2D Fredholm integral equations (FIE). Using the operational matrix of integral for interpolating scaling functions, FIE reduces to a set of algebraic equations that one can obtain an approximate solution by solving this system. The convergence analysis is investigated, and some numerical experiments confirm the accuracy and validity of the method. To show the ability of the proposed method, we compare it with others.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Zhao-Li Shen ◽  
Ting-Zhu Huang ◽  
Bruno Carpentieri ◽  
Chun Wen

Smoothed aggregation multigrid method is considered for computing stationary distributions of Markov chains. A judgement which determines whether to implement the whole aggregation procedure is proposed. Through this strategy, a large amount of time in the aggregation procedure is saved without affecting the convergence behavior. Besides this, we explain the shortage and irrationality of the Neighborhood-Based aggregation which is commonly used in multigrid methods. Then a modified version is presented to remedy and improve it. Numerical experiments on some typical Markov chain problems are reported to illustrate the performance of these methods.


1989 ◽  
Vol 3 (4) ◽  
pp. 453-475 ◽  
Author(s):  
P.J.M. Van Laarhoven ◽  
C.G.E. Boender ◽  
E.H.L. Aarts ◽  
A. H. G. Rinnooy Kan

Simulated annealing is a probabilistic algorithm for approximately solving large combinatorial optimization problems. The algorithm can mathematically be described as the generation of a series of Markov chains, in which each Markov chain can be viewed as the outcome of a random experiment with unknown parameters (the probability of sampling a cost function value). Assuming a probability distribution on the values of the unknown parameters (the prior distribution) and given the sequence of configurations resulting from the generation of a Markov chain, we use Bayes's theorem to derive the posterior distribution on the values of the parameters. Numerical experiments are described which show that the posterior distribution can be used to predict accurately the behavior of the algorithm corresponding to the next Markov chain. This information is also used to derive optimal rules for choosing some of the parameters governing the convergence of the algorithm.


Sign in / Sign up

Export Citation Format

Share Document