scholarly journals Design of experiment in the development of spme method for the determination of pesticide residues in fruits and vegetables

2015 ◽  
Vol 2 (1) ◽  
Author(s):  
Lukman Bola Abdulra’uf ◽  
Guan Huat Tan

AbstractThe various microextraction techniques have been developed in order to reduce sample preparation time, improve sensitivity and selectivity as well as to corroborate the recent advances in the development of highly sensitive and efficient analytical instrumentation. The current trend is aimed at the simplification and miniaturization of extraction steps, which has led to the combination of multi-step extraction and analytical analysis into single uninterrupted step. The method development involves the screening and subsequent optimization of both gas chromatography-mass spectrometry (GC-MS) and solid phase microextraction (SPME) parameters using multivariate experimental design, which has been shown to be efficient and effective with little experimental runs. The use of microextraction has been very effective in the analysis of contaminants in food, water and the environments to ensure they are safe and does not pose any health risk to human.

2019 ◽  
Vol 15 (7) ◽  
pp. 788-800 ◽  
Author(s):  
Natasa P. Kalogiouri ◽  
Victoria F. Samanidou

Background:The sample preparation is the most crucial step in the analytical method development. Taking this into account, it is easily understood why the domain of sample preparation prior to detection is rapidly developing. Following the modern trends towards the automation, miniaturization, simplification and minimization of organic solvents and sample volumes, green microextraction techniques witness rapid growth in the field of food quality and safety. In a globalized market, it is essential to face the consumers need and develop analytical methods that guarantee the quality of food products and beverages. The strive for the accurate determination of organic hazards in a famous and appreciated alcoholic beverage like wine has necessitated the development of microextraction techniques.Objective:The objective of this review is to summarize all the recent microextraction methodologies, including solid phase extraction (SPE), solid phase microextraction (SPME), liquid-phase microextraction (LPME), dispersive liquid-liquid microextraction (DLLME), stir bar sorptive extraction (SBSE), matrix solid-phase dispersion (MSPD), single-drop microextraction (SDME) and dispersive solid phase extraction (DSPE) that were developed for the determination of hazardous organic compounds (pesticides, mycotoxins, colorants, biogenic amines, off-flavors) in wine. The analytical performance of the techniques is evaluated and their advantages and limitations are discussed.Conclusion:An extensive investigation of these techniques remains vital through the development of novel strategies and the implication of new materials that could upgrade the selectivity for the extraction of target analytes.


2000 ◽  
Vol 83 (3) ◽  
pp. 698-713 ◽  
Author(s):  
Julie Fillion ◽  
François Sauvé ◽  
Jennifer Selwyn

Abstract A method is described for the determination of 251 pesticide and degradation product residues in fruit and vegetable samples. Extraction of the sample with acetonitrile is followed by a saltingout step. Co-extractives are removed by passing a portion of the acetonitrile extract through an octadecyl (C18) solid-phase extraction cleanup cartridge and then, in a second cleanup, through a carbon cartridge coupled to an amino propyl cartridge. Determination is by gas chromatography with mass-selective detection in the selected-ion monitoring mode, and by liquid chromatography with post-column reaction and fluorescence detection for N-methyl carbamates. The method has been used for analysis of various fruits and vegetables, such as apple, banana, cabbage, carrot, cucumber, lettuce, orange, pear, pepper, and pineapple. Limits of detection range between 0.02 and 1.0 mg/kg for most compounds. Over 80% of the compounds have a limit of detection of ≤0.04 mg/kg.


2005 ◽  
Vol 88 (2) ◽  
pp. 595-614 ◽  
Author(s):  
Steven J Lehotay ◽  
André de Kok ◽  
Maurice Hiemstra ◽  
Peter van Bodegraven

Abstract Validation experiments were conducted of a simple, fast, and inexpensive method for the determination of 229 pesticides fortified at 10–100 ng/g in lettuce and orange matrixes. The method is known as the quick, easy, cheap, effective, rugged, and safe (QuEChERS) method for pesticide residues in foods. The procedure involved the extraction of a 15 g sample with 15 mL acetonitrile, followed by a liquid–liquid partitioning step performed by adding 6 g anhydrous MgSO4 plus 1.5 g NaCl. After centrifugation, the extract was decanted into a tube containing 300 mg primary secondary amine (PSA) sorbent plus 1.8 g anhydrous MgSO4, which constituted a cleanup procedure called dispersive solid-phase extraction (dispersive SPE). After a second shaking and centrifugation step, the acetonitrile extract was transferred to autosampler vials for concurrent analysis by gas chromatography/mass spectrometry with an ion trap instrument and liquid chromatography/tandem mass spectrometry with a triple quadrupole instrument using electrospray ionization. Each analytical method was designed to analyze 144 pesticides, with 59 targeted by both instruments. Recoveries for all but 11 of the analytes in at least one of the matrixes were between 70–120% (90–110% for 206 pesticides), and repeatabilities typically <10% were achieved for a wide range of fortified pesticides, including methamidophos, spinosad, imidacloprid, and imazalil. Dispersive SPE with PSA retained carboxylic acids (e.g., daminozide), and <50% recoveries were obtained for asulam, pyridate, dicofol, thiram, and chlorothalonil. Many actual samples and proficiency test samples were analyzed by the method, and the results compared favorably with those from traditional methods.


2016 ◽  
Vol 8 (7) ◽  
pp. 1690-1698 ◽  
Author(s):  
Xinchao Ruan ◽  
Qian Lu ◽  
Zeyu Yang

A sample preparation method was optimized for the determination of polycyclic aromatic hydrocarbons (PAHs) and representative organophosphate esters (OPEs) in indoor dust.


Sign in / Sign up

Export Citation Format

Share Document