scholarly journals Hydromorphological and landscape valorization of the Poprad river valley

Author(s):  
Maria Nawieśniak ◽  
Mateusz Strutyński

Abstract Hydromorphological and landscape valorization of the Poprad river valley. The paper presents the results of hydromorphological and landscape valorization. The research was carried out in the Valley of the Poprad River, in the section from Piwniczna-Zdrój to Rytro (Małopolska voivodship). The hydromorphological valorization was made using the method of the evaluation of hydromorphological quality of the river. ECOVAST method was used for landscape valorization. On the basis of the research, Authors concluded that the research area is characterized by considerable hydromorphological variability, in particular in relation to the floodplains terraces and their connectivity with the main channel of the river. At the same time the valley of the Poprad river is characterized by the landscape of regional significance, with a very large tourist potential.

Author(s):  
Erwin Theofilius ◽  
Zahidah Hasan ◽  
Asep Agus Handaka ◽  
Herman Hamndani

This study conducted to determine the water quality of Situ Ciburuy based on the structure of the gastropod community as a bioindicator. The survey method used in this study based on collecting data directly at the research area (purpose sampling method).  For instance, species and density of gastropods were descriptively analyzed, using diversity index and evenes index. For instance, The findings showed that level of water quality in  Situ Ciburuy based on gastropods bioindicators was lightly polluted. That is indicated by the low to moderate diversity of gastropods, which ranges from 1.31-1.98. The Shannon evenness index (0,73-0.95) revealed low gastropod species diversity in Situ Ciburuy, indicating low evenness of gastropod in Situ Ciburuy.


Geografie ◽  
2016 ◽  
Vol 121 (1) ◽  
pp. 54-78
Author(s):  
Kateřina Kujanová ◽  
Milada Matoušková

The main goal of this paper is to verify the hypothesis that application of appropriate restoration measures can lead to an improvement in river habitat quality and to achieve good hydromorphological conditions within the ecological status under the Water Framework Directive 2000/60/ES. The study includes an analysis of river network modifications founded on comparing historical and present-day maps, a determination of regional hydromorphological reference conditions based on a field survey and measurements, an assessment of hydromorphological quality of the studied water body and a proposal of appropriate restoration measures. The effects on improvement in hydromorphological status were predicted on the basis of a simulation of hydromorphological conditions after the application of proposed restoration measures. Overall, at least a good hydromorphological status would be achieved. The study proved that it is essential to carry out a hydromorphological survey including a determination of reference conditions as it provides some outputs necessary for a proposal and application of efficient restoration.


2020 ◽  
Vol 5 (1) ◽  
pp. 40
Author(s):  
Irien Akinina Fatkhiandari ◽  
I Gde Budi Indrawan, Dr.

Geometries of excavated tunnel portal slopes at Bagong Dam site was initially designed without taking into account earthquake load. The excavated slope designs also assumed the rocks consisting the slopes were homogenous. The purpose of this research was to evaluate stability of the excavated tunnel inlet and outlet slopes at the Bagong Dam site under static and earthquake loads using finite element method. Stability of the natural slopes was also analyzed for comparison. The numerical static and pseudostatic analyses of slope stability were carried out using RS2 software (Rocscience, Inc.). Input data used in the numerical analyses were obtained from engineering geological mapping, rock core analyses, and laboratory tests. Seismic coefficient applied in the pseudostatic slope stability analyses was determined following guideline described in Indonesian National Standard. The engineering geological mapping and evaluation of rock cores indicated that the inlet tunnel slope consisted of four types of materials, namely residual soil, poor quality of volcanic breccia, very poor quality of volcanic breccia, and good quality of volcanic breccia. The outlet portal slope consisted of six types of materials, namely residual soil, very poor quality of limestone, poor quality of limestone, very poor quality of volcanic breccia, poor quality breccia, and good quality breccia. Based on the secondary elastic wave velocity (Vs) values, the rock masses in the research area were classified as hard rock (SA). Seismic analyses based on the earthquake hazard source map with 10% probability of exceedance in 50 years provided by the National Earthquake Center (2017) indicated that the PGA and the corresponding amplification factor FPGA in the research area were 0.3 and 0.8, respectively. The calculated seismic coefficient for the pseudostatic slope stability analyses was 0.12. The numerical analysis results showed that, in general, earthquake load reduced critical Strength Reduction Factor (SRF) values of the slopes. However, the natural and excavated tunnel portal slopes were relatively stable under static and earthquake loads. The natural slope at the tunnel inlet with a 40° inclination had critical SRF value of 4.0, while that of at the tunnel outlet with a 51° inclination had critical SRF value of 2.6. Under static load, the excavated slopes at the tunnel inlet and outlet having a 45° inclination had critical SRF values of 2.4 and 5.0, respectively. Under earthquake load, the excavated slopes at the tunnel inlet and outlet had critical SRF values of 2.3 and 3.5, respectively.


2018 ◽  
Vol 40 ◽  
pp. 04006
Author(s):  
Kohji Michioku ◽  
Yuki Osawa ◽  
Keiichi Kanda

In a middle stream reach, irreversible morphological changes are observed such as growth of a huge sandbar in front of the confluence, thalweg migration from the left to right bank, erosion of the main channel and sedimentary deposit on the floodplain. As a countermeasure against such degradation of river morphology, a groyne was constructed beneath the tributary confluence. Performance of a groyne in controlling flood flow, sediment transport and river morphology was investigated by a twodimensional hydrodynamic model. The analysis on twenty years of morphological change indicates that the groyne has an excellent performance in improving quality of river morphology such as reduction of the sandbar development and migration of the thalweg to the original position.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Emilio Suyama ◽  
Roberto C. Quinino ◽  
Frederico R. B. Cruz

Estimators for the parameters of the Markovian multiserver queues are presented, from samples that are the number of clients in the system at arbitrary points and their sojourn times. As estimation in queues is a recognizably difficult inferential problem, this study focuses on the estimators for the arrival rate, the service rate, and the ratio of these two rates, which is known as the traffic intensity. Simulations are performed to verify the quality of the estimations for sample sizes up to 400. This research also relates notable new insights, for example, that the maximum likelihood estimator for the traffic intensity is equivalent to its moment estimator. Some limitations of the results are presented along with a detailed numerical example and topics for future developments in this research area.


2020 ◽  
Vol 21 (12) ◽  
pp. 2407-2417
Author(s):  
Ki-Hwan Jang ◽  
Hae-Sung Yoon ◽  
Hyun-Taek Lee ◽  
Eunseob Kim ◽  
Sung-Hoon Ahn

AbstractIn micro-/nano-scale, multi-material three-dimensional (3D), structuring has been a major research area for making various applications. To overcome dimensional and material limitations, several hybrid processes have been proposed. The hybrid processes were performed in the same or different numerically controlled stages. If the stages differed, the substrate was moved and locked to the stage before fabrication. During the locking, alignment error occurred. This error became problematic because this significantly compromised the quality of final structures. Here, an alignment method for a hybrid process consisted of a focused ion beam milling, aerodynamically focused nanoparticle printing, and micro-machining was developed. Two sets of collinear marks were placed at the edges of the substrate. Rotational and translational errors were calculated and compensated using the marks. Processes having different scales were bridged through this alignment method. Various materials were utilized, and accuracy was less than 50 nm when the length of the substrate was less than 13 mm. The alignment method was employed to fabricate a V-shaped structure and step-shaped structure using polymer, ceramic, and metal.


2020 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
I DEWA MADE ARTHAGAMA ◽  
I MADE DANA

 Evaluation Quality of Intensif Paddy Soils and Conversion Paddy Soils to Garden at Subak Kesiut Kerambitan Tabanan. This experiment conducted to evaluate intensif Paddy Soils and conversion paddy soils to garden at SubakKesiut Kerambitan Tabanan. There were two steps applied in this study including field survey to determine the research area and points soils sampling; analysis soils properties are: physic, chemistry and soils biology for get minimum data set to determine the soil quality at Laboratory of Soils and Enveronment Faculty of Agriculture Unud. The results of this study showed: the soil quality of intensif paddy soils is better than conversion paddy soils to garden, that showed with SQR at intensif paddy soil is 18 and at conversions paddy soil is 25. The limiting faktor at conversion paddy soils to garden is P available, there are less than at intensif paddy soils.


Sign in / Sign up

Export Citation Format

Share Document