scholarly journals On the elicitability of range value at risk

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Tobias Fissler ◽  
Johanna F. Ziegel

Abstract The debate of which quantitative risk measure to choose in practice has mainly focused on the dichotomy between value at risk (VaR) and expected shortfall (ES). Range value at risk (RVaR) is a natural interpolation between VaR and ES, constituting a tradeoff between the sensitivity of ES and the robustness of VaR, turning it into a practically relevant risk measure on its own. Hence, there is a need to statistically assess, compare and rank the predictive performance of different RVaR models, tasks subsumed under the term “comparative backtesting” in finance. This is best done in terms of strictly consistent loss or scoring functions, i.e., functions which are minimized in expectation by the correct risk measure forecast. Much like ES, RVaR does not admit strictly consistent scoring functions, i.e., it is not elicitable. Mitigating this negative result, we show that a triplet of RVaR with two VaR-components is elicitable. We characterize all strictly consistent scoring functions for this triplet. Additional properties of these scoring functions are examined, including the diagnostic tool of Murphy diagrams. The results are illustrated with a simulation study, and we put our approach in perspective with respect to the classical approach of trimmed least squares regression.

2021 ◽  
Vol 14 (11) ◽  
pp. 540
Author(s):  
Eyden Samunderu ◽  
Yvonne T. Murahwa

Developments in the world of finance have led the authors to assess the adequacy of using the normal distribution assumptions alone in measuring risk. Cushioning against risk has always created a plethora of complexities and challenges; hence, this paper attempts to analyse statistical properties of various risk measures in a not normal distribution and provide a financial blueprint on how to manage risk. It is assumed that using old assumptions of normality alone in a distribution is not as accurate, which has led to the use of models that do not give accurate risk measures. Our empirical design of study firstly examined an overview of the use of returns in measuring risk and an assessment of the current financial environment. As an alternative to conventional measures, our paper employs a mosaic of risk techniques in order to ascertain the fact that there is no one universal risk measure. The next step involved looking at the current risk proxy measures adopted, such as the Gaussian-based, value at risk (VaR) measure. Furthermore, the authors analysed multiple alternative approaches that do not take into account the normality assumption, such as other variations of VaR, as well as econometric models that can be used in risk measurement and forecasting. Value at risk (VaR) is a widely used measure of financial risk, which provides a way of quantifying and managing the risk of a portfolio. Arguably, VaR represents the most important tool for evaluating market risk as one of the several threats to the global financial system. Upon carrying out an extensive literature review, a data set was applied which was composed of three main asset classes: bonds, equities and hedge funds. The first part was to determine to what extent returns are not normally distributed. After testing the hypothesis, it was found that the majority of returns are not normally distributed but instead exhibit skewness and kurtosis greater or less than three. The study then applied various VaR methods to measure risk in order to determine the most efficient ones. Different timelines were used to carry out stressed value at risks, and it was seen that during periods of crisis, the volatility of asset returns was higher. The other steps that followed examined the relationship of the variables, correlation tests and time series analysis conducted and led to the forecasting of the returns. It was noted that these methods could not be used in isolation. We adopted the use of a mosaic of all the methods from the VaR measures, which included studying the behaviour and relation of assets with each other. Furthermore, we also examined the environment as a whole, then applied forecasting models to accurately value returns; this gave a much more accurate and relevant risk measure as compared to the initial assumption of normality.


Risks ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 76
Author(s):  
Saswat Patra ◽  
Malay Bhattacharyya

This paper investigates the risk exposure for options and proposes MaxVaR as an alternative risk measure which captures the risk better than Value-at-Risk especially. While VaR is a measure of end-of-horizon risk, MaxVaR captures the interim risk exposure of a position or a portfolio. MaxVaR is a more stringent risk measure as it assesses the risk during the risk horizon. For a 30-day maturity option, we find that MaxVaR can be 40% higher than VaR at a 5% significance level. It highlights the importance of MaxVaR as a risk measure and shows that the risk is vastly underestimated when VaR is used as the measure for risk. The sensitivity of MaxVaR with respect to option characteristics like moneyness, time to maturity and risk horizons at different significance levels are observed. Further, interestingly enough we find that the MaxVar to VaR ratio is higher for stocks than the options and we can surmise that stock returns are more volatile than options. For robustness, the study is carried out under different distributional assumptions on residuals and for different stock index options.


2015 ◽  
Vol 4 (4) ◽  
pp. 188
Author(s):  
HERLINA HIDAYATI ◽  
KOMANG DHARMAWAN ◽  
I WAYAN SUMARJAYA

Copula is already widely used in financial assets, especially in risk management. It is due to the ability of copula, to capture the nonlinear dependence structure on multivariate assets. In addition, using copula function doesn’t require the assumption of normal distribution. There fore it is suitable to be applied to financial data. To manage a risk the necessary measurement tools can help mitigate the risks. One measure that can be used to measure risk is Value at Risk (VaR). Although VaR is very popular, it has several weaknesses. To overcome the weakness in VaR, an alternative risk measure called CVaR can be used. The porpose of this study is to estimate CVaR using Gaussian copula. The data we used are the closing price of Facebook and Twitter stocks. The results from the calculation using 90%  confidence level showed that the risk that may be experienced is at 4,7%, for 95% confidence level it is at 6,1%, and for 99% confidence level it is at 10,6%.


2019 ◽  
Vol 8 (1) ◽  
pp. 15
Author(s):  
NI WAYAN UCHI YUSHI ARI SUDINA ◽  
KOMANG DHARMAWAN ◽  
I WAYAN SUMARJAYA

Conditional value at risk (CVaR) is widely used in risk measure that takes into account losses exceeding the value at risk level. The aim of this research is to compare the performance of the EVT-GJR-vine copula method and EVT-GARCH-vine copula method in estimating CVaR of the portfolio using backtesting. Based on the backtesting results, it was found that the EVT-GJR-vine copula method have better performance when compared to the EVT-GARCH-vine copula method in estimating the CVaR value of the portfolio. This can be seen from the statistical values ??, and  of EVT-GJR-vine copula method which is generally smaller than the statistical values , and of the EVT-GARCH-vine copula method.


2019 ◽  
Vol 181 (2) ◽  
pp. 473-507 ◽  
Author(s):  
E. Ruben van Beesten ◽  
Ward Romeijnders

Abstract In traditional two-stage mixed-integer recourse models, the expected value of the total costs is minimized. In order to address risk-averse attitudes of decision makers, we consider a weighted mean-risk objective instead. Conditional value-at-risk is used as our risk measure. Integrality conditions on decision variables make the model non-convex and hence, hard to solve. To tackle this problem, we derive convex approximation models and corresponding error bounds, that depend on the total variations of the density functions of the random right-hand side variables in the model. We show that the error bounds converge to zero if these total variations go to zero. In addition, for the special cases of totally unimodular and simple integer recourse models we derive sharper error bounds.


1992 ◽  
Vol 14 (4) ◽  
pp. 286-291 ◽  
Author(s):  
Christopher J. Destache ◽  
Daniel E. Hilleman ◽  
Syed J. Mohiuddin ◽  
Patricia T. Lang

Author(s):  
Evangelos Vasileiou ◽  
Themistoclis Pantos

In this paper, we examine how value at risk (VaR) contributes to the financial market's stability. We apply the Guidelines on Risk Measurement and the Calculation of Global Exposure and Counterparty Risk for UCITS of the Committee of European Securities Regulators (CESR 2010) to the main indices of the 12 stock markets of the countries that have used the euro as their official currency since its initial circulation. We show that gaps in the legislative framework give incentives to investment funds to adopt conventional models for the VaR estimation in order to avoid the increased costs that the advanced models involve. For this reason, we apply the commonly used historical simulation VaR (HVaR) model, which is: (i) taught at most finance classes; (ii) widely applied in the financial industry; and (iii) accepted by CESR (2010). The empirical evidence shows the HVaR does not really contribute to financial stability, and the legislative framework does not offer the appropriate guidance. The HVaR model is not representative of the real financial risk, and does not give any signal for trends in the near future. The HVaR is absolutely backward-looking and this increases the stock market's overreaction. The fact that the suggested confidence level in CESR (2010) is set at 99 percent leads to hidden pro-cyclicality. Scholars and researchers should focus on issues such as the abovementioned, otherwise the VaR estimations will become, sooner or later, just a formality, and such conventional statistical measures rarely contribute to financial stability.


Sign in / Sign up

Export Citation Format

Share Document