Label-free detection of double-stranded DNA molecules with polyelectrolyte-modified capacitive field-effect sensors

2017 ◽  
Vol 84 (10) ◽  
Author(s):  
Thomas S. Bronder ◽  
Arshak Poghossian ◽  
Michael Keusgen ◽  
Michael J. Schöning

AbstractIn this study, polyelectrolyte-modified field-effect-based electrolyte-insulator-semiconductor (EIS) devices have been used for the label-free electrical detection of double-stranded deoxyribonucleic acid (dsDNA) molecules. The sensor-chip functionalization with a positively charged polyelectrolyte layer provides the possibility of direct adsorptive binding of negatively charged target DNA oligonucleotides onto the SiO

Nanoscale ◽  
2015 ◽  
Vol 7 (14) ◽  
pp. 6143-6150 ◽  
Author(s):  
Chunsheng Wu ◽  
Thomas Bronder ◽  
Arshak Poghossian ◽  
Carl Frederik Werner ◽  
Michael J. Schöning

A multi-spot light-addressable potentiometric sensor was applied for a label-free electrical detection of DNA immobilization and hybridization by the intrinsic molecular charge.


2016 ◽  
Vol 60 (1) ◽  
pp. 81-90 ◽  
Author(s):  
Vivek Pachauri ◽  
Sven Ingebrandt

Biologically sensitive field-effect transistors (BioFETs) are one of the most abundant classes of electronic sensors for biomolecular detection. Most of the time these sensors are realized as classical ion-sensitive field-effect transistors (ISFETs) having non-metallized gate dielectrics facing an electrolyte solution. In ISFETs, a semiconductor material is used as the active transducer element covered by a gate dielectric layer which is electronically sensitive to the (bio-)chemical changes that occur on its surface. This review will provide a brief overview of the history of ISFET biosensors with general operation concepts and sensing mechanisms. We also discuss silicon nanowire-based ISFETs (SiNW FETs) as the modern nanoscale version of classical ISFETs, as well as strategies to functionalize them with biologically sensitive layers. We include in our discussion other ISFET types based on nanomaterials such as carbon nanotubes, metal oxides and so on. The latest examples of highly sensitive label-free detection of deoxyribonucleic acid (DNA) molecules using SiNW FETs and single-cell recordings for drug screening and other applications of ISFETs will be highlighted. Finally, we suggest new device platforms and newly developed, miniaturized read-out tools with multichannel potentiometric and impedimetric measurement capabilities for future biomedical applications.


2012 ◽  
Vol 209 (5) ◽  
pp. 925-934 ◽  
Author(s):  
Maryam H. Abouzar ◽  
Arshak Poghossian ◽  
Andrey G. Cherstvy ◽  
Angela M. Pedraza ◽  
Sven Ingebrandt ◽  
...  

2D Materials ◽  
2021 ◽  
Author(s):  
Mohammad Mosarof Hossain ◽  
Babar Shabbir ◽  
Yingjie Wu ◽  
Wenzhi Yu ◽  
Vaishnavi Krishnamurthi ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Arshak Poghossian ◽  
Melanie Jablonski ◽  
Denise Molinnus ◽  
Christina Wege ◽  
Michael J. Schöning

Coronavirus disease 2019 (COVID-19) is a novel human infectious disease provoked by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, no specific vaccines or drugs against COVID-19 are available. Therefore, early diagnosis and treatment are essential in order to slow the virus spread and to contain the disease outbreak. Hence, new diagnostic tests and devices for virus detection in clinical samples that are faster, more accurate and reliable, easier and cost-efficient than existing ones are needed. Due to the small sizes, fast response time, label-free operation without the need for expensive and time-consuming labeling steps, the possibility of real-time and multiplexed measurements, robustness and portability (point-of-care and on-site testing), biosensors based on semiconductor field-effect devices (FEDs) are one of the most attractive platforms for an electrical detection of charged biomolecules and bioparticles by their intrinsic charge. In this review, recent advances and key developments in the field of label-free detection of viruses (including plant viruses) with various types of FEDs are presented. In recent years, however, certain plant viruses have also attracted additional interest for biosensor layouts: Their repetitive protein subunits arranged at nanometric spacing can be employed for coupling functional molecules. If used as adapters on sensor chip surfaces, they allow an efficient immobilization of analyte-specific recognition and detector elements such as antibodies and enzymes at highest surface densities. The display on plant viral bionanoparticles may also lead to long-time stabilization of sensor molecules upon repeated uses and has the potential to increase sensor performance substantially, compared to conventional layouts. This has been demonstrated in different proof-of-concept biosensor devices. Therefore, richly available plant viral particles, non-pathogenic for animals or humans, might gain novel importance if applied in receptor layers of FEDs. These perspectives are explained and discussed with regard to future detection strategies for COVID-19 and related viral diseases.


2006 ◽  
Vol 103 (4) ◽  
pp. 921-926 ◽  
Author(s):  
A. Star ◽  
E. Tu ◽  
J. Niemann ◽  
J.-C. P. Gabriel ◽  
C. S. Joiner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document