Combined Influence of Unsteady Free Stream Velocity and Free Stream Turbulence on Stagnation Point Heat Transfer

Author(s):  
Rama Subba Reddy Gorla
1983 ◽  
Vol 105 (1) ◽  
pp. 66-71 ◽  
Author(s):  
R. S. R. Gorla

An analysis is presented to investigate the combined effects of transient free-stream velocity and free-stream turbulence at a stagnation point on a cylinder situated in a crossflow. A model has been successfully formulated for the eddy diffusivity induced by the free-stream turbulence. The governing momentum equation has been integrated by the steepest descent method. Numerical solutions are provided for the unsteady wall shear stress function for specific free-stream transients. The results are correlated by a new turbulence parameter. It has been found that the wall friction increases with increasing free-stream turbulence intensity. In the case of flows involving unsteady free-stream velocity, the friction factor increases with increasing values of the reduced frequency of oscillations.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Tapas Ray Mahapatra ◽  
Sabyasachi Mondal ◽  
Dulal Pal

An analysis is made on the study of two-dimensional MHD (magnetohydrodynamic) boundary-layer stagnation-point flow of an electrically conducting power-law fluid over a stretching surface when the surface is stretched in its own plane with a velocity proportional to the distance from the stagnation-point in the presence of thermal radiation and suction/injection. The paper examines heat transfer in the stagnation-point flow of a power-law fluid except when the ratio of the free stream velocity and stretching velocity is equal to unity. The governing partial differential equations along with the boundary conditions are first brought into a dimensionless form and then the equations are solved by Runge-Kutta fourth-order scheme with shooting techniques. It is found that the temperature at a point decreases/increases with increase in the magnetic field when free stream velocity is greater/less than the stretching velocity. It is further observed that for a given value of the magnetic parameter M, the dimensionless rate of heat transfer at the surface and |θ′(0)| decreases/increases with increase in the power-law index n. Further, the temperature at a point in the fluid decreases with increase in the radiation parameter NR when free stream velocity is greater/less than the stretching velocity.


2011 ◽  
Vol 669 ◽  
pp. 64-89 ◽  
Author(s):  
JAN G. WISSINK ◽  
WOLFGANG RODI

The effect of an incoming wake on the flow around and heat transfer from the stagnation region of a circular cylinder was studied using direct numerical simulations (DNSs). Four simulations were carried out at a Reynolds number (based on free-stream velocity and cylinder diameterD) ofReD= 13200: one two-dimensional (baseline) simulation and three three-dimensional simulations. The three-dimensional simulations comprised a baseline simulation with a uniform incoming velocity field, a simulation in which realistic wake data – generated in a separate precursor DNS – were introduced at the inflow plane and, finally, a simulation in which the turbulent fluctuations were removed from the incoming wake in order to study the effect of the mean velocity deficit on the heat transfer in the stagnation region. In the simulation with realistic wake data, the incoming wake still exhibited the characteristic meandering behaviour of a near-wake. When approaching the regions immediately above and below the stagnation line of the cylinder, the vortical structures from the wake were found to be significantly stretched by the strongly accelerating wall-parallel (circumferential) flow into elongated vortex tubes that became increasingly aligned with the direction of flow. As the elongated streamwise vortical structures impinge on the stagnation region, on one side they transport cool fluid towards the heated cylinder, while on the other side hot fluid is transported away from the cylinder towards the free stream, thereby increasing the heat transfer. The DNS results are compared with various semi-empirical correlations for predicting the augmentation of heat transfer due to free-stream turbulence.


1966 ◽  
Vol 88 (3) ◽  
pp. 249-256 ◽  
Author(s):  
L. H. Back ◽  
A. B. Witte

Laminar boundary-layer heat transfer and shear-stress predictions from existing similarity solutions are extended in an approximate way to perfect gas flows with a large free-stream velocity gradient parameter β and variable density-viscosity product ρμ across the boundary layer resulting from a highly cooled wall. The dimensionless enthalpy gradient at the wall gw′, to which the heat flux is related, is found not to vary appreciably with β. Thus the application of similarity solutions on a local basis to predict heat transfer from accelerated flows to an arbitrary surface may be a reasonable approximation involving a minimum amount of calculation time. Unlike gw′, the dimensionless velocity gradient at the wall fw″, to which the shear stress is related, is strongly dependent on β.


2015 ◽  
Vol 13 (1) ◽  
pp. 29-36 ◽  
Author(s):  
Swati Mukhopadhyay

Abstract This paper presents the magnetohydrodynamic (MHD) boundary layer stagnation point flow with diffusion of chemically reactive species undergoing first-order chemical reaction over a permeable stretching sheet in presence of partial slip. With the help of similarity transformations, the partial differential equations corresponding to momentum and the concentration equations are transformed into non-linear ordinary differential equations. Numerical solutions of these equations are obtained by shooting method. It is found that the horizontal velocity increases with the increasing value of the ratio of the free stream velocity and the stretching velocity. Velocity decreases with the increasing magnetic parameter when the free-stream velocity is less than the stretching velocity but the opposite behavior is noted when the free-stream velocity is greater than the stretching velocity. Due to suction, fluid velocity decreases at a particular point of the surface. With increasing velocity slip parameter, velocity increases when the free-stream velocity is greater than the stretching velocity. But the concentration decreases in this case. Concentration decreases with increasing mass slip parameter.


1983 ◽  
Vol 105 (1) ◽  
pp. 33-40 ◽  
Author(s):  
M. F. Blair

An experimental research program was conducted to determine the influence of free-stream turbulence on zero pressure gradient, fully turbulent boundary layer flow. Connective heat transfer coefficients and boundary layer mean velocity and temperature profile data were obtained for a constant free-stream velocity of 30 m/s and free-stream turbulence intensities ranging from approximately 1/4 to 7 percent. Free-stream multicomponent turbulence intensity, longitudinal integral scale, and spectral distributions were obtained for the full range of turbulence levels. The test results with 1/4 percent free-stream turbulence indicate that these data were in excellent agreement with classic two-dimensional, low free-stream turbulence, turbulent boundary layer correlations. For fully turbulent boundary layer flow, both the skin friction and heat transfer were found to be substantially increased (up to ∼ 20 percent) for the higher levels of free-stream turbulence. Detailed results of the experimental study are presented in the present paper (Part I). A comprehensive analysis is provided in a companion paper (Part II).


Sign in / Sign up

Export Citation Format

Share Document