Effects of Partial Slip on Chemically Reactive Solute Distribution in MHD Boundary Layer Stagnation Point Flow Past a Stretching Permeable Sheet

2015 ◽  
Vol 13 (1) ◽  
pp. 29-36 ◽  
Author(s):  
Swati Mukhopadhyay

Abstract This paper presents the magnetohydrodynamic (MHD) boundary layer stagnation point flow with diffusion of chemically reactive species undergoing first-order chemical reaction over a permeable stretching sheet in presence of partial slip. With the help of similarity transformations, the partial differential equations corresponding to momentum and the concentration equations are transformed into non-linear ordinary differential equations. Numerical solutions of these equations are obtained by shooting method. It is found that the horizontal velocity increases with the increasing value of the ratio of the free stream velocity and the stretching velocity. Velocity decreases with the increasing magnetic parameter when the free-stream velocity is less than the stretching velocity but the opposite behavior is noted when the free-stream velocity is greater than the stretching velocity. Due to suction, fluid velocity decreases at a particular point of the surface. With increasing velocity slip parameter, velocity increases when the free-stream velocity is greater than the stretching velocity. But the concentration decreases in this case. Concentration decreases with increasing mass slip parameter.

2006 ◽  
Vol 11 (2) ◽  
pp. 187-197 ◽  
Author(s):  
G. C. Layek ◽  
S. Mukhopadhyay ◽  
SK. A. Samad

An analysis is performed to investigate the structure of the boundary layer stagnation‐point flow and heat transfer of a fluid through a porous medium over a stretching sheet. A scaling group of transformations is applied to get the invariants. Using the invariants, a third and a second order ordinary differential equations corresponding to the momentum and energy equations are obtained respectively. The equations are then solved numerically. It is found that the horizontal velocity increases with the increasing value of the ratio of the free stream velocity (ax) and the stretching velocity (ax). The temperature decreases in this case. At a particular point of the stretching sheet, the fluid velocity decreases or increases with the increase of the permeability of the porous medium when the free stream velocity is less or grater than the stretching velocity.


2011 ◽  
Vol 66 (12) ◽  
pp. 705-711 ◽  
Author(s):  
Sin Wei Wong ◽  
Abu Omar Awang ◽  
Anuar Ishak

The steady two-dimensional stagnation-point flow of an incompressible viscous fluid over an exponentially shrinking/stretching sheet is studied. The shrinking/stretching velocity, the free stream velocity, and the surface temperature are assumed to vary in a power-law form with the distance from the stagnation point. The governing partial differential equations are transformed into a system of ordinary differential equations before being solved numerically by a finite difference scheme known as the Keller-box method. The features of the flow and heat transfer characteristics for different values of the governing parameters are analyzed and discussed. It is found that dual solutions exist for the shrinking case, while for the stretching case, the solution is unique.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Tapas Ray Mahapatra ◽  
Sabyasachi Mondal ◽  
Dulal Pal

An analysis is made on the study of two-dimensional MHD (magnetohydrodynamic) boundary-layer stagnation-point flow of an electrically conducting power-law fluid over a stretching surface when the surface is stretched in its own plane with a velocity proportional to the distance from the stagnation-point in the presence of thermal radiation and suction/injection. The paper examines heat transfer in the stagnation-point flow of a power-law fluid except when the ratio of the free stream velocity and stretching velocity is equal to unity. The governing partial differential equations along with the boundary conditions are first brought into a dimensionless form and then the equations are solved by Runge-Kutta fourth-order scheme with shooting techniques. It is found that the temperature at a point decreases/increases with increase in the magnetic field when free stream velocity is greater/less than the stretching velocity. It is further observed that for a given value of the magnetic parameter M, the dimensionless rate of heat transfer at the surface and |θ′(0)| decreases/increases with increase in the power-law index n. Further, the temperature at a point in the fluid decreases with increase in the radiation parameter NR when free stream velocity is greater/less than the stretching velocity.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Sobia Akbar ◽  
Azad Hussain

Purpose. The flow of nonviscous Casson fluid is examined in this study over an oscillating surface. The model of the fluid flow has been inspected in the presence of oblique stagnation point flow. The scrutiny is subsumed for the Riga plate by considering the effects of magnetohydrodynamics. The Riga plate is considered as an electromagnetic lever which carries eternal magnets and a stretching line up of alternating electrodes coupled on a plane surface. We have considered nonboundary layer two-dimensional incompressible flow of the fluid. The fluid flow model is analyzed in the fixed frame of reference. Motivation. The motivation of achieving more suitable results has always been a quest of life for scientists; the capability of determining the boundary layer of flow on aircraft which either stays laminar or turns turbulent has encouraged the researcher to study compressible flow in depth. The compressible fluid with boundary layer flow has been utilized by numerous researchers to reduce skin friction and enhance thermal and convectional heat exchange. Design/Approach/Methodology. The attained partial differential equations will be critically inspected by using suitable similarity transformation to transform these flows thrived equations into higher nonlinear ordinary differential equations (ODE). Then, these equations of motion are intercepted by mathematical techniques such as the bvp4c method in Maple and Matlab. The graphical and tabular representation of different parameters is also given. Findings. The behavior of β and modified Hartmann number M increases by positively increasing the values of both parameters for F η , while ω decreases with increasing the values of ω for F η . The graph of β shows upward behavior for distinct values for both G η and G ′ η for velocity portray. Prandtl number and β for the temperature profile of θ η and θ 1 η goes downward with increasing parameters.


1966 ◽  
Vol 88 (3) ◽  
pp. 249-256 ◽  
Author(s):  
L. H. Back ◽  
A. B. Witte

Laminar boundary-layer heat transfer and shear-stress predictions from existing similarity solutions are extended in an approximate way to perfect gas flows with a large free-stream velocity gradient parameter β and variable density-viscosity product ρμ across the boundary layer resulting from a highly cooled wall. The dimensionless enthalpy gradient at the wall gw′, to which the heat flux is related, is found not to vary appreciably with β. Thus the application of similarity solutions on a local basis to predict heat transfer from accelerated flows to an arbitrary surface may be a reasonable approximation involving a minimum amount of calculation time. Unlike gw′, the dimensionless velocity gradient at the wall fw″, to which the shear stress is related, is strongly dependent on β.


1983 ◽  
Vol 105 (1) ◽  
pp. 66-71 ◽  
Author(s):  
R. S. R. Gorla

An analysis is presented to investigate the combined effects of transient free-stream velocity and free-stream turbulence at a stagnation point on a cylinder situated in a crossflow. A model has been successfully formulated for the eddy diffusivity induced by the free-stream turbulence. The governing momentum equation has been integrated by the steepest descent method. Numerical solutions are provided for the unsteady wall shear stress function for specific free-stream transients. The results are correlated by a new turbulence parameter. It has been found that the wall friction increases with increasing free-stream turbulence intensity. In the case of flows involving unsteady free-stream velocity, the friction factor increases with increasing values of the reduced frequency of oscillations.


2016 ◽  
Vol 71 (9) ◽  
pp. 837-848 ◽  
Author(s):  
Ehtsham Azhar ◽  
Z. Iqbal ◽  
E.N. Maraj

AbstractThe present article dicusses the computational analysis of entropy generation for the stagnation-point flow of Sutterby nanofluid over a linear stretching plate. The Sutterby fluid is chosen to study the effect for three major classes of non-Newtonian fluids, i.e. pseudoplastic, Newtonian, and dilatant. The effects of pertinent physical parameters are examined under the approximation of boundary layer. The system of coupled nonlinear partial differential equations is simplified by incorporating suitable similarity transformation into a system of non-linear-coupled ordinary differential equations. Entropy generation analysis is conducted numerically, and the results are displayed through graphs and tables. Significant findings are listed in the closing remarks.


Sign in / Sign up

Export Citation Format

Share Document