scholarly journals A Note on the Continued Fraction of Minkowski

2017 ◽  
Vol 12 (2) ◽  
pp. 125-130 ◽  
Author(s):  
Hendrik Jager

Abstract Denote by Θ1,Θ2, · · · the sequence of approximation coefficients of Minkowski’s diagonal continued fraction expansion of a real irrational number x. For almost all x this is a uniformly distributed sequence in the interval [0, 1/2 ]. The average distance between two consecutive terms of this sequence and their correlation coefficient are explicitly calculated and it is shown why these two values are close to 1/6 and 0, respectively, the corresponding values for a random sequence in [0, 1/2].

Author(s):  
Glyn Harman

We write ‖x‖ to denote the least distance from x to an integer, and write p for a prime variable. Duffin and Schaeffer [l] showed that for almost all real α the inequalityhas infinitely many solutions if and only ifdiverges. Thus f(x) = (x log log (10x))−1 is a suitable choice to obtain infinitely many solutions for almost all α. It has been shown [2] that for all real irrational α there are infinitely many solutions to (1) with f(p) = p−/13. We will show elsewhere that the exponent can be increased to 7/22. A very strong result on primes in arithmetic progressions (far stronger than anything within reach at the present time) would lead to an improvement on this result. On the other hand, it is very easy to find irrational a such that no convergent to its continued fraction expansion has prime denominator (for example (45– √10)/186 does not even have a square-free denominator in its continued fraction expansion, since the denominators are alternately divisible by 4 and 9).


Author(s):  
Jingcheng Tong

AbstractLet ξ be an irrational number with simple continued fraction expansion be its ith convergent. Let Mi = [ai+1,…, a1]+ [0; ai+2, ai+3,…]. In this paper we prove that Mn−1 < r and Mn R imply which generalizes a previous result of the author.


2020 ◽  
pp. 1-26
Author(s):  
CHRISTOPHE LEURIDAN

Let $\unicode[STIX]{x1D703}$ be an irrational real number. The map $T_{\unicode[STIX]{x1D703}}:y\mapsto (y+\unicode[STIX]{x1D703})\!\hspace{0.6em}{\rm mod}\hspace{0.2em}1$ from the unit interval $\mathbf{I}= [\!0,1\![$ (endowed with the Lebesgue measure) to itself is ergodic. In a short paper [Parry, Automorphisms of the Bernoulli endomorphism and a class of skew-products. Ergod. Th. & Dynam. Sys.16 (1996), 519–529] published in 1996, Parry provided an explicit isomorphism between the measure-preserving map $[T_{\unicode[STIX]{x1D703}},\text{Id}]$ and the unilateral dyadic Bernoulli shift when $\unicode[STIX]{x1D703}$ is extremely well approximated by the rational numbers, namely, if $$\begin{eqnarray}\inf _{q\geq 1}q^{4}4^{q^{2}}~\text{dist}(\unicode[STIX]{x1D703},q^{-1}\mathbb{Z})=0.\end{eqnarray}$$ A few years later, Hoffman and Rudolph [Uniform endomorphisms which are isomorphic to a Bernoulli shift. Ann. of Math. (2)156 (2002), 79–101] showed that for every irrational number, the measure-preserving map $[T_{\unicode[STIX]{x1D703}},\text{Id}]$ is isomorphic to the unilateral dyadic Bernoulli shift. Their proof is not constructive. In the present paper, we relax notably Parry’s condition on $\unicode[STIX]{x1D703}$ : the explicit map provided by Parry’s method is an isomorphism between the map $[T_{\unicode[STIX]{x1D703}},\text{Id}]$ and the unilateral dyadic Bernoulli shift whenever $$\begin{eqnarray}\inf _{q\geq 1}q^{4}~\text{dist}(\unicode[STIX]{x1D703},q^{-1}\mathbb{Z})=0.\end{eqnarray}$$ This condition can be relaxed again into $$\begin{eqnarray}\inf _{n\geq 1}q_{n}^{3}~(a_{1}+\cdots +a_{n})~|q_{n}\unicode[STIX]{x1D703}-p_{n}|<+\infty ,\end{eqnarray}$$ where $[0;a_{1},a_{2},\ldots ]$ is the continued fraction expansion and $(p_{n}/q_{n})_{n\geq 0}$ the sequence of convergents of $\Vert \unicode[STIX]{x1D703}\Vert :=\text{dist}(\unicode[STIX]{x1D703},\mathbb{Z})$ . Whether Parry’s map is an isomorphism for every $\unicode[STIX]{x1D703}$ or not is still an open question, although we expect a positive answer.


Author(s):  
LINGLING HUANG ◽  
CHAO MA

Abstract This paper is concerned with the growth rate of the product of consecutive partial quotients relative to the denominator of the convergent for the continued fraction expansion of an irrational number. More precisely, given a natural number $m,$ we determine the Hausdorff dimension of the following set: $$ \begin{align*} E_m(\tau)=\bigg\{x\in [0,1): \limsup\limits_{n\rightarrow\infty}\frac{\log (a_n(x)a_{n+1}(x)\cdots a_{n+m}(x))}{\log q_n(x)}=\tau\bigg\}, \end{align*} $$ where $\tau $ is a nonnegative number. This extends the dimensional result of Dirichlet nonimprovable sets (when $m=1$ ) shown by Hussain, Kleinbock, Wadleigh and Wang.


2001 ◽  
Vol 38 (1-4) ◽  
pp. 97-113 ◽  
Author(s):  
A. Bíró ◽  
J. M. Deshouillers ◽  
Vera T. Sós

Let be a real irrational number and A =(xn) be a sequence of positive integers. We call A a characterizing sequence of or of the group Z mod 1 if lim n 2A n !1 k k =0 if and only if 2 Z mod 1. In the present paper we prove the existence of such characterizing sequences, also for more general subgroups of R = Z . Inthespecialcase Z mod 1 we give explicit construction of a characterizing sequence in terms of the continued fraction expansion of. Further, we also prove some results concerning the growth and gap properties of such sequences. Finally, we formulate some open problems.


1988 ◽  
Vol 31 (2) ◽  
pp. 197-204 ◽  
Author(s):  
Jingcheng Tong

Let ξ be an irrational number with simple continued fraction expansion ξ= [a0;a1,a2,…], Pn/qn be its nth convergent, . The following two theorems were proved by Müller [9] and rediscovered by Bagemihl and McLaughlin [1]:Theorem 1.For n>1,


2019 ◽  
Vol 40 (11) ◽  
pp. 3105-3149
Author(s):  
EUGEN MIHAILESCU ◽  
MARIUSZ URBAŃSKI

We introduce and study skew product Smale endomorphisms over finitely irreducible shifts with countable alphabets. This case is different from the one with finite alphabets and we develop new methods. In the conformal context we prove that almost all conditional measures of equilibrium states of summable Hölder continuous potentials are exact dimensional and their dimension is equal to the ratio of (global) entropy and Lyapunov exponent. We show that the exact dimensionality of conditional measures on fibers implies global exact dimensionality of the original measure. We then study equilibrium states for skew products over expanding Markov–Rényi transformations and settle the question of exact dimensionality of such measures. We apply our results to skew products over the continued fraction transformation. This allows us to extend and improve the Doeblin–Lenstra conjecture on Diophantine approximation coefficients to a larger class of measures and irrational numbers.


2016 ◽  
Vol 37 (4) ◽  
pp. 1323-1344
Author(s):  
JUN WU ◽  
JIAN-SHENG XIE

Let $\unicode[STIX]{x1D714}=[a_{1},a_{2},\ldots ]$ be the infinite expansion of a continued fraction for an irrational number $\unicode[STIX]{x1D714}\in (0,1)$, and let $R_{n}(\unicode[STIX]{x1D714})$ (respectively, $R_{n,k}(\unicode[STIX]{x1D714})$, $R_{n,k+}(\unicode[STIX]{x1D714})$) be the number of distinct partial quotients, each of which appears at least once (respectively, exactly $k$ times, at least $k$ times) in the sequence $a_{1},\ldots ,a_{n}$. In this paper, it is proved that, for Lebesgue almost all $\unicode[STIX]{x1D714}\in (0,1)$ and all $k\geq 1$, $$\begin{eqnarray}\displaystyle \lim _{n\rightarrow \infty }\frac{R_{n}(\unicode[STIX]{x1D714})}{\sqrt{n}}=\sqrt{\frac{\unicode[STIX]{x1D70B}}{\log 2}},\quad \lim _{n\rightarrow \infty }\frac{R_{n,k}(\unicode[STIX]{x1D714})}{R_{n}(\unicode[STIX]{x1D714})}=\frac{C_{2k}^{k}}{(2k-1)\cdot 4^{k}},\quad \lim _{n\rightarrow \infty }\frac{R_{n,k}(\unicode[STIX]{x1D714})}{R_{n,k+}(\unicode[STIX]{x1D714})}=\frac{1}{2k}.\end{eqnarray}$$ The Hausdorff dimensions of certain level sets about $R_{n}$ are discussed.


Author(s):  
Jos Blom

AbstractA rational number is called a best approximant of the irrational number ζ if it lies closer to ζ than all rational numbers with a smaller denominator. Metrical properties of these best approximants are studied. The main tool is the two-dimensional ergodic system, underlying the continued fraction expansion.


Author(s):  
Wieb Bosma ◽  
Cor Kraaikamp

AbstractAmong all possible semiregular continued fraction expansions of an irrational number the one with the best approximation properties, in a well-defined and natural sense, is determined. Some properties of this so called optimal continued fraction expansion are described.


Sign in / Sign up

Export Citation Format

Share Document