Das toroidale schwachionisierte Magnetoplasma II

1967 ◽  
Vol 22 (12) ◽  
pp. 1904-1919
Author(s):  
F. Karger

A special alternating field method was used to eliminate the influence of the concentration effect (described in Part I1) on the measurements of interest and to increase by more than an order of magnitude the critical magnetic field strength for the onset of the helical instability of the positive column. This made it possible to check in detail the theory — formulated in Parts I and II — of a stable, weakly ionized toroidal magnetoplasma (potential profile, density profile, charge carrier losses).The theoretically predicted transverse electric field strength leading to the torus drift was observed, while the outward density displacement due to the torus drift did not occur. It was proved that the reason for this was an effect which results from a transverse gradient in the rate of ionization (grad ξ effect) and which causes a substantial reduction of the charge carrier losses. In the decaying plasma with vanishing longitudinal electric field, on the other hand, the outward density displacement was reeorded in accordance with the theory.The influence of the toroidal curvature on the magnetic field strength at which the helical instability sets in and on the turbulent state of the positive column was also investigated. It was also possible to verify the influence of the grad ξ effect on the helical oscillation.The grad ξ effect may be important for the early heating phase in projected toroidal fusion machines with neutral gas stabilization.

Author(s):  
Heinz London ◽  
Frederick Alexander Lindemann

In previous papers of F. and H. London supraconductivity has been described as a phenomenon, in which the current density is not connected with the electric field, as in normal conductors, but depends on magnetic field strength according to the equation Λ c curl J = - H with B = H and with Λ = m / ne 2, a new characteristic constant which contains the number n of supraconducting electrons. the behaviour of the electric field is not completely determined by this equation. Using Maxwell's induction law one can conclude from (1) only that Λ c curl j = c curl E or Λj = E + grand μ, where the physical signifance of grad μ is yet unknown.


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Debarun Das ◽  
Marwan F. Al-Rjoub ◽  
Rupak K. Banerjee

Magnetophoretic immunoassay is a widely used technique in lab-on-chip systems for detection and isolation of target cells, pathogens, and biomolecules. In this method, target pathogens (antigens) bind to specific antibodies coated on magnetic microbeads (mMBs) which are then separated using an external magnetic field for further analysis. Better capture of mMB is important for improving the sensitivity and performance of magnetophoretic assay. The objective of this study was to develop a numerical model of magnetophoretic separation in electroosmotic flow (EOF) using magnetic field generated by a miniaturized magnet and to evaluate the capture efficiency (CE) of the mMBs. A finite-volume solver was used to compute the trajectory of mMBs under the coupled effects of EOF and external magnetic field. The effect of steady and time varying (switching) electric fields (150–450 V/cm) on the CE was studied under reduced magnetic field strength. During switching, the electric potential at the inlet and outlet of the microchannel was reversed or switched, causing reversal in flow direction. The CE was a function of the momentum of the mMB in EOF and the applied magnetic field strength. By switching the electric field, CE increased from 75% (for steady electric field) to 95% for lower electric fields (150–200 V/cm) and from 35% to 47.5% for higher electric fields (400–450 V/cm). The CE was lower at higher EOF electric fields because the momentum of the mMB overcame the external magnetic force. Switching allowed improved CE due to the reversal and decrease in EOF velocity and increase in mMB residence time under the reduced magnetic field strength. These improvements in CE, particularly at higher electric fields, made sequential switching of EOF an efficient separation technique of mMBs for use in high throughput magnetophoretic immunoassay devices. The reduced size of the magnet, along with the efficient mMB separation technique of switching can lead to the development of portable device for detection of target cells, pathogens, and biomolecules.


2004 ◽  
Vol 22 (7) ◽  
pp. 2515-2523 ◽  
Author(s):  
J. S. Pickett ◽  
L.-J. Chen ◽  
S. W. Kahler ◽  
O. Santolík ◽  
D. A. Gurnett ◽  
...  

Abstract. Isolated electrostatic structures are observed throughout much of the 4RE by 19.6RE Cluster orbit. These structures are observed in the Wideband plasma wave instrument's waveform data as bipolar pulses (one positive and one negative peak in the electric field amplitude) and tripolar pulses (two positive and one negative peak, or vice versa). These structures are observed at all of the boundary layers, in the solar wind and magnetosheath, and along auroral field lines at 4.5-6.5RE. Using the Wideband waveform data from the various Cluster spacecraft we have carried out a survey of the amplitudes and time durations of these structures and how these quantities vary with the local magnetic field strength. Such a survey has not been carried out before, and it reveals certain characteristics of solitary structures in a finite magnetic field, a topic still inadequately addressed by theories. We find that there is a broad range of electric field amplitudes at any specific magnetic field strength, and there is a general trend for the electric field amplitudes to increase as the strength of the magnetic field increases over a range of 5 to 500nT. We provide a possible explanation for this trend that relates to the structures being Bernstein-Greene-Kruskal mode solitary waves. There is no corresponding dependence of the duration of the structures on the magnetic field strength, although a plot of these two quantities reveals the unexpected result that with the exception of the magnetosheath, all of the time durations for all of the other regions are comparable, whereas the magnetosheath time durations clearly are in a different category of much smaller time duration. We speculate that this implies that the structures are much smaller in size. The distinctly different pulse durations for the magnetosheath pulses indicate the possibility that the pulses are generated by a mechanism which is different from the mechanism operating in other regions.


2017 ◽  
Vol 3 (4) ◽  
pp. 152-159
Author(s):  
Erwin Azizi Jayadipraja

Background: High-voltage air ducts is the government program to supply electricity needs. However, in practice, obstacles have been identified in the form of rejection from the community due to the outstanding issues that high-voltage air ducts have an impact on health.Aim: This research aims to analysis the magnitude of electromagnetic wave radiation of high-voltage air ducts construction on health.Methods: The study was conducted by measuring electromagnetic wave radiation prior to high-voltage air ducts (150 kV) construction and predicting the amount of radiation generated after this operation and its impact on health.Result: The field measurement result showed that the highest strength of magnetic field in the absence of construction and operation activity of high-voltage air ducts 150 kV was 0.00085 mT and the highest electric field was 0.004241251 V/m. The results of the magnetic field strength analysis showed that the highest strength of magnetic field and electric field when the high-voltage air ducts is completed and operated was magnetic field of 0.00415 mT and electric field of 38.4 V/m. The value was far lower than the standard limits recommended by IRPA / INIRC, WHO1990 and SNI 04-6950-2003. The allowed electric field strength is 5 kV / m and the allowed magnetic field strength is 0.1 mT.Conclusion: Electromagnetic wave radiation of High-Voltage Air Ducts is not exceeded the allowed limit, so it will not cause a direct risk to health.


Author(s):  
Natal'ya Buyakova ◽  
Vasiliy Zakaryukin ◽  
Andrey Kryukov ◽  
Van Le

In the article analysis technique of electromagnetic safety conditions on routes of compact power lines (CPL) is offered. As the tool the program complex Fazonord was applied to modeling of CPL modes and electromagnetic fields. Results of modeling show that the average levels of CPL electric field strengths exceed a similar indicator for the standard power line by 25…145 %, distinctions of maximums lie within 7… 150 %. Especially considerable strength excesses take place at three-segment CPL. By criterion of magnetic field strength the return picture is observed: levels of CPL magnetic field strength on 70 … 90 % below than in traditional power line, and the best picture of electromagnetic safety possesses the foursegment power line.


1976 ◽  
Vol 32 ◽  
pp. 613-622
Author(s):  
I.A. Aslanov ◽  
Yu.S. Rustamov

SummaryMeasurements of the radial velocities and magnetic field strength of β CrB were carried out. It is shown that there is a variability with the rotation period different for various elements. The curve of the magnetic field variation measured from lines of 5 different elements: FeI, CrI, CrII, TiII, ScII and CaI has a complex shape specific for each element. This may be due to the presence of magnetic spots on the stellar surface. A comparison with the radial velocity curves suggests the presence of a least 4 spots of Ti and Cr coinciding with magnetic spots. A change of the magnetic field with optical depth is shown. The curve of the Heffvariation with the rotation period is given. A possibility of secular variations of the magnetic field is shown.


1998 ◽  
Vol 08 (PR2) ◽  
pp. Pr2-579-Pr2-582 ◽  
Author(s):  
S. Tumanski ◽  
M. Stabrowski

Sign in / Sign up

Export Citation Format

Share Document