Relationship Between In-Situ Electric Field and External Magnetic Field Strength in Human Models-Rational of IEEE C95.6 Standard Revisited

Author(s):  
Katsuaki Aga ◽  
Akimasa Hirata ◽  
Ilkka Laakso
2016 ◽  
Vol 717 ◽  
pp. 112-117
Author(s):  
Jun Ying Hou ◽  
Hong Jiang Gao ◽  
Xiao Lin Liu ◽  
Yu Jiao ◽  
Li Liu

A new processing concept has been developed to produce Ni-P-PTFE electroless composite coating. This method combines magnetic field and electroless composite plating techniques to prepare high-quality Ni-P-PTFE electroless composite coating. The influence of magnetic on composite plating process and coatings performance by changing some factors such as the plating time, magnetic field strength, magnetic field direction. The results indicate that the external magnetic field improved deposition rate and the PTFE particles content of composite coatings, meanwhile, some performances of composite coating like thickness, corrosion resistance, were effected by external magnetic field strength. Therefore, the method combines magnetic field and electroless completing techniques had a wide application prospect in the aspect of improving the properties of electroless composite coating.


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Debarun Das ◽  
Marwan F. Al-Rjoub ◽  
Rupak K. Banerjee

Magnetophoretic immunoassay is a widely used technique in lab-on-chip systems for detection and isolation of target cells, pathogens, and biomolecules. In this method, target pathogens (antigens) bind to specific antibodies coated on magnetic microbeads (mMBs) which are then separated using an external magnetic field for further analysis. Better capture of mMB is important for improving the sensitivity and performance of magnetophoretic assay. The objective of this study was to develop a numerical model of magnetophoretic separation in electroosmotic flow (EOF) using magnetic field generated by a miniaturized magnet and to evaluate the capture efficiency (CE) of the mMBs. A finite-volume solver was used to compute the trajectory of mMBs under the coupled effects of EOF and external magnetic field. The effect of steady and time varying (switching) electric fields (150–450 V/cm) on the CE was studied under reduced magnetic field strength. During switching, the electric potential at the inlet and outlet of the microchannel was reversed or switched, causing reversal in flow direction. The CE was a function of the momentum of the mMB in EOF and the applied magnetic field strength. By switching the electric field, CE increased from 75% (for steady electric field) to 95% for lower electric fields (150–200 V/cm) and from 35% to 47.5% for higher electric fields (400–450 V/cm). The CE was lower at higher EOF electric fields because the momentum of the mMB overcame the external magnetic force. Switching allowed improved CE due to the reversal and decrease in EOF velocity and increase in mMB residence time under the reduced magnetic field strength. These improvements in CE, particularly at higher electric fields, made sequential switching of EOF an efficient separation technique of mMBs for use in high throughput magnetophoretic immunoassay devices. The reduced size of the magnet, along with the efficient mMB separation technique of switching can lead to the development of portable device for detection of target cells, pathogens, and biomolecules.


2021 ◽  
Vol 87 (2) ◽  
Author(s):  
Swati Baruah ◽  
U. Sarma ◽  
R. Ganesh

Lane formation dynamics in externally driven pair-ion plasma (PIP) particles is studied in the presence of external magnetic field using Langevin dynamics (LD) simulation. The phase diagram obtained distinguishing the no-lane and lane states is systematically determined from a study of various Coulomb coupling parameter values. A peculiar lane formation-disintegration parameter space is identified; lane formation area extended to a wide range of Coulomb coupling parameter values is observed before disappearing to a mixed phase. The different phases are identified by calculating the order parameter. This and the critical parameters are calculated directly from LD simulation. The critical electric field strength value above which the lanes are formed distinctly is obtained, and it is observed that in the presence of the external magnetic field, the PIP system requires a higher value of the electric field strength to enter into the lane formation state than that in the absence of the magnetic field. We further find out the critical value of electric field frequency beyond which the system exhibits a transition back to the disordered state and this critical frequency is found as an increasing function of the electric field strength in the presence of an external magnetic field. The movement of the lanes is also observed in a direction perpendicular to that of the applied electric and magnetic field directions, which reveals the existence of the electric field drift in the system under study. We also use an oblique force field as the external driving force, both in the presence and absence of the external magnetic field. The application of this oblique force changes the orientation of the lane structures for different applied oblique angle values.


Author(s):  
Heinz London ◽  
Frederick Alexander Lindemann

In previous papers of F. and H. London supraconductivity has been described as a phenomenon, in which the current density is not connected with the electric field, as in normal conductors, but depends on magnetic field strength according to the equation Λ c curl J = - H with B = H and with Λ = m / ne 2, a new characteristic constant which contains the number n of supraconducting electrons. the behaviour of the electric field is not completely determined by this equation. Using Maxwell's induction law one can conclude from (1) only that Λ c curl j = c curl E or Λj = E + grand μ, where the physical signifance of grad μ is yet unknown.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3635
Author(s):  
Junqing Lan ◽  
Akimasa Hirata

This study computationally evaluates the effect of loudspeakers on the in situ electric field in a driver body model exposed to the magnetic field from a wireless power transfer (WPT) system in an electric vehicle (EV), one with a body made of carbon fiber reinforced plastic (CFRP) and the other made with aluminum. A quasi-static two-step approach was applied to compute the in situ electric field. The computational results showed that the magnetic field distribution generated by the WPT is significantly altered around the loudspeakers, and shows obvious discontinuity and local enhancement. The maximum spatial-average magnetic field strength in the driver’s body was increased by 11% in the CFRP vehicle. It was 2.25 times larger than the reference levels (RL) prescribed in the International Commission of Non-Ionizing Radiation Protection (ICNIRP) guidelines in 2010. In addition, we found that the in situ electric field computed by the line- and volume-averaging methods were stable if the top 0.1% voxels are excluded. The maximum value was well below the basic restriction (BR) of the ICNIRP guidelines. Nevertheless, the presence of the loudspeaker led to increments in the electric field strength in parts of the human body, suggesting the potential influence of permissible transmitting power in the WPT system. The maximum electric field strength in the thigh and buttock with the woofer, increased by 27% in the CFRP vehicle. The arm value was up to 3 times higher than that obtained without the tweeter in the aluminum vehicle. Moreover, this study found that the maximum electric field strength depended on the location of the loudspeaker with respect to the WPT system and the separation from the driver model. Therefore, the loudspeaker should be considered when evaluating the maximum in situ electric field strength in the vehicle body design stage.


2011 ◽  
Vol 413 ◽  
pp. 213-216
Author(s):  
Ji Jun Fan ◽  
Nan Hui Yu

In this paper, experimental study of the microwave reflection behavior in MRF was carried out. The results showed that at the same frequency the microwave reflectivity of MRF decreased with the increasing of magnetic field strength; and with the increasing of particle concentration, microwave reflectivity decreased, monotonously. Under the given magnetic field, with the increasing of microwave frequency, it first decreased, there is a lowest point at 9.2GHz, and then it increased. Usually, it is considered that the change of internal structure of MRF under external magnetic field is the main reason for the regulation behavior of microwave reflectivity.


2020 ◽  
Author(s):  
Tarik Salman ◽  
Reka Winslow ◽  
Noé Lugaz

<p>Our knowledge of the properties of Coronal Mass Ejections (CMEs) in the inner heliosphere is constrained by the relative lack of plasma observations between the Sun and 1 AU. In this work, we present a comprehensive catalog of 47 CMEs measured in situ measurements by two or more radially aligned spacecraft (MESSENGER, Venus Express, STEREO, and Wind/ACE). We estimate the CME impact speeds at Mercury and Venus using a drag-based model and present an average propagation profile of CMEs (speed and deceleration/acceleration) in the inner heliosphere. We find that CME deceleration continues past Mercury's orbit but most of the deceleration occurs between the Sun and Mercury. We examine the exponential decrease of the maximum magnetic field strength in the CME with heliocentric distance using two approaches: a modified statistical method and analysis from individual conjunction events. Findings from both the approaches are on average consistent with previous studies but show significant event-to-event variability. We also find the expansion of the CME sheath to be well fit by a linear function. However, we observe the average sheath duration and its increase to be fairly independent of the initial CME speed, contradicting commonly held knowledge that slower CMEs drive larger sheaths. We also present an analysis of the 3 November 2011 CME observed in a longitudinal conjunction between MESSENGER, Venus Express, and STEREO-B focusing on the expansion of the CME and its correlation with the exponential fall-off of the maximum magnetic field strength in the ejecta.</p>


Sign in / Sign up

Export Citation Format

Share Document