scholarly journals Notizen: E-Typ-verzögerte Fluoreszenz von 1,1′-Dicoronyl in einer Kunststoffmatrix / E-type Delayed Fluorescence of 1,1′-dycoronyl in a Plastic Matrix

1975 ◽  
Vol 30 (8) ◽  
pp. 1097-1098 ◽  
Author(s):  
M. Zander

Abstract E-type delayed fluorescence of 1,1′-dicoronyl (III) has been established by measurement of luminescence lifetimes and activation energy.

1974 ◽  
Vol 3 (1) ◽  
pp. 81-86
Author(s):  
Yoshihumi Kusumoto ◽  
Yasuhiko Gondo ◽  
Yoshiya Kanda

1975 ◽  
Vol 30 (2) ◽  
pp. 262 ◽  
Author(s):  
M. Zander

Abstract In 1. c. 1 war gezeigt worden, daß Circobiphenyl (I) die aufgrund seines relativ kleinen S1-T1-Inter-valls von ca. 4kK zu erwartende E-Typ-verzögerte Fluoreszenz zeigt.


2017 ◽  
Vol 19 (12) ◽  
pp. 8428-8434 ◽  
Author(s):  
J. Gibson ◽  
T. J. Penfold

The activation energy of thermally activated delayed fluorescence can be reduced by nonadiabatic coupling.


2003 ◽  
Vol 762 ◽  
Author(s):  
A. Gordijn ◽  
J.K. Rath ◽  
R.E.I. Schropp

AbstractDue to the high temperatures used for high deposition rate microcrystalline (μc-Si:H) and polycrystalline silicon, there is a need for compact and temperature-stable doped layers. In this study we report on films grown by the layer-by-layer method (LbL) using VHF PECVD. Growth of an amorphous silicon layer is alternated by a hydrogen plasma treatment. In LbL, the surface reactions are separated time-wise from the nucleation in the bulk. We observed that it is possible to incorporate dopant atoms in the layer, without disturbing the nucleation. Even at high substrate temperatures (up to 400°C) doped layers can be made microcrystalline. At these temperatures, in the continuous wave case, crystallinity is hindered, which is generally attributed to the out-diffusion of hydrogen from the surface and the presence of impurities (dopants).We observe that the parameter window for the treatment time for p-layers is smaller compared to n-layers. Moreover we observe that for high temperatures, the nucleation of p-layers is more adversely affected than for n-layers. Thin, doped layers have been structurally, optically and electrically characterized. The best n-layer made at 400°C, with a thickness of only 31 nm, had an activation energy of 0.056 eV and a dark conductivity of 2.7 S/cm, while the best p-layer made at 350°C, with a thickness of 29 nm, had an activation energy of 0.11 V and a dark conductivity of 0.1 S/cm. The suitability of these high temperature n-layers has been demonstrated in an n-i-p microcrystalline silicon solar cell with an unoptimized μc-Si:H i-layer deposited at 250°C and without buffer. The Voc of the cell is 0.48 V and the fill factor is 70 %.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1897-P
Author(s):  
HISASHI YOKOMIZO ◽  
ATSUSHI ISHIKADO ◽  
TAKANORI SHINJO ◽  
KYOUNGMIN PARK ◽  
YASUTAKA MAEDA ◽  
...  

Author(s):  
А. А. Горват ◽  
В. М. Кришеник ◽  
А. Е. Кріштофорій ◽  
В. В. Мінькович ◽  
О. А. Молнар

2015 ◽  
Vol 8 (3) ◽  
pp. 2176-2188 ◽  
Author(s):  
Keisham Nanao Singh

This article reports on the Dielectric Relaxation Studies of two Liquid Crystalline compounds - 7O.4 and 7O.6 - doped with dodecanethiol capped Silver Nanoparticles. The liquid crystal molecules are aligned homeotropically using CTAB. The low frequency relaxation process occurring above 1 MHz is fitted to Cole-Cole formula using the software Dielectric Spectra fit. The effect of the Silver Nanoparticles on the molecular dipole dynamics are discussed in terms of the fitted relaxation times, Cole-Cole distribution parameter and activation energy. The study indicate a local molecular rearrangement of the liquid crystal molecules without affecting the order of the bulk liquid crystal molecules but these local molecules surrounding the Silver Nanoparticles do not contribute to the relaxation process in the studied frequency range. The observed effect on activation energy suggests a change in interaction between the nanoparticles/liquid crystal molecules.


Sign in / Sign up

Export Citation Format

Share Document