High Temperature n- and p-type Doped Microcrystalline Silicon Layers Grown by VHF PECVD Layer-by-Layer Deposition

2003 ◽  
Vol 762 ◽  
Author(s):  
A. Gordijn ◽  
J.K. Rath ◽  
R.E.I. Schropp

AbstractDue to the high temperatures used for high deposition rate microcrystalline (μc-Si:H) and polycrystalline silicon, there is a need for compact and temperature-stable doped layers. In this study we report on films grown by the layer-by-layer method (LbL) using VHF PECVD. Growth of an amorphous silicon layer is alternated by a hydrogen plasma treatment. In LbL, the surface reactions are separated time-wise from the nucleation in the bulk. We observed that it is possible to incorporate dopant atoms in the layer, without disturbing the nucleation. Even at high substrate temperatures (up to 400°C) doped layers can be made microcrystalline. At these temperatures, in the continuous wave case, crystallinity is hindered, which is generally attributed to the out-diffusion of hydrogen from the surface and the presence of impurities (dopants).We observe that the parameter window for the treatment time for p-layers is smaller compared to n-layers. Moreover we observe that for high temperatures, the nucleation of p-layers is more adversely affected than for n-layers. Thin, doped layers have been structurally, optically and electrically characterized. The best n-layer made at 400°C, with a thickness of only 31 nm, had an activation energy of 0.056 eV and a dark conductivity of 2.7 S/cm, while the best p-layer made at 350°C, with a thickness of 29 nm, had an activation energy of 0.11 V and a dark conductivity of 0.1 S/cm. The suitability of these high temperature n-layers has been demonstrated in an n-i-p microcrystalline silicon solar cell with an unoptimized μc-Si:H i-layer deposited at 250°C and without buffer. The Voc of the cell is 0.48 V and the fill factor is 70 %.

1998 ◽  
Vol 507 ◽  
Author(s):  
S. Hamma ◽  
D. Colliquet ◽  
P. Rocai Cabarrocas

ABSTRACTMicrocrystalline silicon films were deposited on corning glass substrates both by the standard hydrogen dilution and the layer-by-layer (LBL) technique. In-situ UV-visible spectroscopic ellipsometry measurements were performed to analyze the evolution of the composition of the films.The change of the hydrogen plasma conditions by increasing the pressure in the LBL process leads to a faster kinetic of crystallization and to an increase of the deposition rate by a factor of two. The increase of the pressure and the decrease of the inter-electrode distance allowed to increase the deposition rate from 0.26 to 3 Å/s in the hydrogen dilution technique. Interestingly enough, the crystalline fraction of the films remains higher than 50%. However, as the deposition rate increases the growth process results in a slower kinetic of crystallization with a long range evolution of the film composition (up to 0.5 νm).


1997 ◽  
Vol 71 (23) ◽  
pp. 3403-3405 ◽  
Author(s):  
K. Saitoh ◽  
M. Kondo ◽  
M. Fukawa ◽  
T. Nishimiya ◽  
A. Matsuda ◽  
...  

2019 ◽  
Vol 27 (05) ◽  
pp. 1950151
Author(s):  
DONGJING LIU ◽  
WEIGUO ZHOU ◽  
JIANG WU

Perovskite LaFeO3/ZSM-5 is synthesized via citrate route for H2S removal at high temperatures. It shows good thermal stability after heat treatment at 500–700∘C with respect to slight changes in crystallographic phase and textural property. It presents the optimal desulfurization performance at 600∘C with sulfur capacity of 1017[Formula: see text][Formula: see text]mol[Formula: see text]S/g and products of S, LaS2, and Fe7S8. Sulfidation at 500∘C yields the same products as sulfidation at 600∘C but displays the lowest sulfur capacity of 408[Formula: see text][Formula: see text]mol[Formula: see text]S/g. Sulfidation at 700∘C produces La2O2S, Fe3S4, and unreacted LaFeO3. The activation energy of the sulfidation reaction over LaFeO3/ZSM-5 is 109.6[Formula: see text]kJ/mol.


2010 ◽  
Vol 24 (28) ◽  
pp. 5527-5538 ◽  
Author(s):  
Q. S. LEI ◽  
H. X. XU ◽  
J. P. XU

In this paper, we reported highly conductive p-type microcrystalline silicon (μc- Si:H ) films deposited on amorphous silicon (a- Si:H ) surface by very high frequency plasma enhanced chemical vapor deposition (VHF PECVD) technique. Hydrogen plasma treatment of amorphous silicon surface and nucleation layers were introduced prior to μc- Si:H films deposition. The film properties were investigated by using Raman spectra, scanning electron microscope (SEM), optical transmission and reflection, as well as dark conductivity measurements. The influence of plasma treatment and nucleation layer on the growth and properties of the thin p-type μc- Si:H films was studied. It is demonstrated that the hydrogen plasma treatment of a- Si:H films gives rise to the deposition of μc- Si:H on the a- Si:H surface. Also, the growth and properties of the μc- Si:H films are strongly dependent on the nucleation layer. The dark conductivity (σd) and crystalline fraction increase with the plasma treatment time and attain high values at about 600 s. A p-type μc- Si:H film with conductivity of 0.0875 Scm-1 at a thickness of 30 nm was obtained. The film was introduced as window layers for flexible solar cells. An efficiency of about 7.15% was obtained.


1964 ◽  
Vol 19 (12) ◽  
pp. 1389-1397
Author(s):  
Heinz Bässler

The d. c. dark conductivity of organic solutions was measured. If the molecules of the solute have conjugated π-electrons and if the high temperature activation energy E(G) of their conductivity is smaller than that of the solvent (E(W)), the observed conductivity is characterized by E(G) and is higher than one would expect according to a linear or logarithmic mixing law generally holding for the conductivities. Besides at concentrations higher than about 0,01 mole percent the intrinsic conductivity of the solvent is quenched. These effects can be explained assuming transfer of thermal excitation energy from the solvent to the solute, in analogy to the fluorescence of liquid organic scintillators. The process works if the activation entropy of the solute is higher than that of the solvent.


1992 ◽  
Vol 283 ◽  
Author(s):  
S. Grebner ◽  
F. Wang ◽  
R. Schwarz

ABSTRACTTo analyse the influence of the grain boundaries (gb) on the transport of carriers in hydrogenated microcrystalline silicon (μC-Si:H) the ambipolar diffusion length (LLMB) was measured by SSPG. In addition, the films were characterised by photo-conductivity, dark conductivity activation energy, Urbach energy (determined by CPM), hydrogen effusion, Raman spectroscopy, X-ray scattering and optical transmission.The sample series was prepared by PECVD of SiH4 diluted with increasing H2 content. Taking the structural information by Raman spectra and X-ray into account, we explain our optical and activation energy measurements within a three-phase-model (amorphous phase, crystalline phase, gb) and a Fermi level pinning in μc-Si:H.


1993 ◽  
Vol 298 ◽  
Author(s):  
Jung Mok Jun ◽  
Kyu Chang Park ◽  
Sung Ki Kim ◽  
Kyung Ha Lee ◽  
Mi Kyung Chu ◽  
...  

AbstractWe have studied the growth of microcrystalline silicon (μc-Si) and amorphous silicon (a-Si:H) by layer by layer deposition technique, where the deposition and the radical exposure are done alternatively. He or hydrogen plasma exposure gives rise to the etching effect of both μc-Si and a-Si:H even though the etch rate by He plasma is much smaller. The long exposure of hydrogen radical on a-Si:H gives rise to the formation of μc-Si at low substrate temperature (Ts), whereas the hydrogen content decreases at high Ts. The growth mechanism of the crystallite is proposed on the basis of experimental results.


1997 ◽  
Vol 467 ◽  
Author(s):  
M. W. D. Froggatt ◽  
W. I. Milne ◽  
M. J. Powell

ABSTRACTInverted-staggered thin film transistors (TFTs) incorporating hydrogenated microcrystalline silicon for both contact and channel regions have been fabricated by plasma enhanced chemical vapour deposition (PECVD) using the high hydrogen-dilution method. The deposition parameters for the channel region were chosen to yield near-intrinsic material with a dark conductivity activation energy of 0.7 eV and a Tauc gap of 1.98 eV, while the doped contact layer was optimised to produce a high dark conductivity of 10 S/cm.These devices exhibit a low off-current but the field effect mobility is found to be lower than that of similar devices incorporating an optimised amorphous silicon channel region. The mobility activation energy in these devices is similar to those incorporating an amorphous channel, but the mobility pre-factor is reduced. We propose that this is due to inhomogeneous conduction through a microcrystalline region with a smaller grain size at the dielectric/channel interface.


2001 ◽  
Vol 664 ◽  
Author(s):  
Jong-Hwan Yoon

ABSTRACTUndoped µc-Si:H film of the strong n-type character with the dark conductivity activation energy of about 0.28 eV was annealed. Annealing was carried out by slowly increasing the temperature from 25 °C to 450 °C at a constant rate of 12 °C/min (one annealing cycle). Annealing effects were monitored by measuring the changes in dark conductivity, oxygen and hydrogen concentrations, and photoluminescence (PL). Dark conductivity activation energy gradually increases with increasing the number of annealing cycles to a saturation value of about 0.6 eV. There is little or no change in the oxygen concentration, but the hydrogen concentration decreases with increasing the number of annealing cycles. The PL band near 1.2 eV disappears with annealing, while the low energy PL band near 0.85 eV dominates rather as the number of annealing cycles increases. A possible explanation will be discussed.


2019 ◽  
Vol 244 (1) ◽  
pp. 13-21 ◽  
Author(s):  
JM Baena ◽  
G Jiménez ◽  
E López-Ruiz ◽  
C Antich ◽  
C Griñán-Lisón ◽  
...  

Biofabrication technologies with layer-by-layer simultaneous deposition of a polymeric matrix and cell-laden bioinks (also known as bioprinting) offer an alternative to conventional treatments to regenerate cartilage tissue. Thermoplastic polymers, like poly-lactic acid, are easy to print using fused deposition modeling, and the shape, mesh structure, biodegradation time, and stiffness can be easily controlled. Besides some of them being clinically approved, the high manufacturing temperatures used in bioprinting applications with these clinically available thermoplastics decrease cell viability. Geometric restriction prevents cell contact with the heated printed fibers, increasing cell viability but comprising the mechanical performance and biodegradation time of the printed parts. The objective of this study was to develop a novel volume-by-volume 3D-biofabrication process that divides the printed part into different volumes and injects the cells after each volume has been printed, once the temperature of the printed thermoplastic fibers has decreased. In order to show the suitability of this process, chondrocytes were isolated from osteoarthritic patient samples and after characterization were used to test the feasibility of the process. Human chondrocytes were bioprinted together with poly-lactic acid and apoptosis, proliferation and metabolic activity were analyzed. This novel volume-by-volume 3D-biofabrication procedure prints a mesh structure layer-by-layer with a high adhesion surface/volume ratio, driving a rapid decrease in the temperature, avoiding contact with cells in high temperature zones. In our study, chondrocytes survived the manufacturing process, with 90% of viability, 2 h after printing, and, after seven days in culture, chondrocytes proliferated and totally colonized the scaffold. The use of the volume-by-volume-based biofabrication process presented in this study shows valuable potential in the short-term development of bioprint-based clinical therapies for cartilage injuries. Impact statement 3D bioprinting represents a novel advance in the area of regenerative biomedicine and tissue engineering for the treatment of different pathologies, among which are those related to cartilage. Currently, the use of different thermoplastic polymers, such as PLA or PCL, for bioprinting processes presents an important limitation: the high temperatures that are required for extrusion affect the cell viability and the final characteristics of the construct. In this work, we present a novel bioprinting process called volume-by-volume (VbV) that allows us to preserve cell viability after bioprinting. This procedure allows cell injection at a safe thermoplastic temperature, and also allows the cells to be deposited in the desired areas of the construct, without the limitations caused by high temperatures. The VbV process could make it easier to bring 3D bioprinting into the clinic, allowing the generation of tissue constructs with polymers that are currently approved for clinical use.


Sign in / Sign up

Export Citation Format

Share Document