Molecular Dynamics Study of a Lithium Ion in Ammonia

1988 ◽  
Vol 43 (6) ◽  
pp. 572-582 ◽  
Author(s):  
S. V. Hannongbua ◽  
T. Ishida ◽  
E. Spohr ◽  
K. Heinzinger

Abstract A Molecular Dynamics simulation of a solution of one Li+ in 215 NH3 molecules has been performed at an average temperature of 235 K. A newly developed flexible model for NH3 is employed and the Li +−NH3 interactions are derived from ab initio calculations. The structure of the solution is described by radial distribution functions and the orientation of the molecules. A solvation number of six is found for Li+ and a strong preference of the solvation shell molecules exists for an orientation where the Li + −N vector and the dipole moment direction of NH3 are parallel. The self-diffusion coefficient, the hindered translational motions and librations are calculated separately for the ammonia molecules in the solvation shell and in the bulk. The effect of Li + on intramolecular geometry and vibrations is reported.

2018 ◽  
Vol 8 (10) ◽  
pp. 1874 ◽  
Author(s):  
Jie Wu ◽  
Jia Wang ◽  
Haiou Ni ◽  
Guimin Lu ◽  
Jianguo Yu

Molten chloride salts are the main components in liquid metal batteries, high-temperature heat storage materials, heat transfer mediums, and metal electrolytes. In this paper, interest is centered on the influence of the LiCl component and temperature on the local structure and transport properties of the molten LiCl-NaCl-KCl system over the temperature range of 900 K to 1200 K. The liquid structure and properties have been studied across the full composition range by molecular dynamics (MD) simulation of a sufficient length to collect reliable values, such as the partial radial distribution function, angular distribution functions, coordination numbers distribution, density, self-diffusion coefficient, ionic conductivity, and shear viscosity. Densities obtained from simulations were underestimated by an average 5.7% of the experimental values. Shear viscosities and ionic conductivity were in good agreement with the experimental data. The association of all ion pairs (except for Li-Li and Cl-Cl) was weakened by an increasing LiCl concentration. Ion clusters were formed in liquids with increasing temperatures. The self-diffusion coefficients and ionic conductivity showed positive dependences on both LiCl concentration and temperature, however, the shear viscosity was the opposite. By analyzing the hydrodynamic radii of each ion and the coordination stability of cation-anion pairs, it was speculated that ion clusters could be the cation-anion coordinated structure and affected the macro properties.


1983 ◽  
Vol 38 (2) ◽  
pp. 214-224 ◽  
Author(s):  
Gy. I. Szász ◽  
K. Heinzinger

Abstract A molecular dynamics simulation of a 2.2 molal aqueous CsF solution has been performed employing the ST2 water model. The basic periodic cube with a sidelength of 18.50 Å contained 200 water molecules, and 8 ions of each kind, corresponding to an experimental density of 1.26 g/cm3. The simulation extended over 6.5 ps with an average temperature of 307 K. The structure of the solution is discussed by means of radial distribution functions and the orientation of the water molecules. The computed hydration numbers in the first shell of Cs+ and F- are 7.9 and 6.8, respectively; the corresponding first hydration shell radii are 3.22 A and 2.64 A, respectively. Values for the hydration shell energies and the heat of solution have been calculated.


1991 ◽  
Vol 46 (10) ◽  
pp. 887-897 ◽  
Author(s):  
D. Marx ◽  
K. Heinzinger ◽  
G. Pálinkás ◽  
I. Bakó

AbstractA recently developed flexible three-site model for methanol was employed to perform a Molecular Dynamics simulation of a 0.6 molal NaCl solution. The ion-methanol and ion-ion potential functions were derived from ab initio calculations. The structural properties of the solution are discussed on the basis of radial and angular distribution functions, the orientation of the methanol molecules, and their geometrical arrangement in the solvation shells of the ions. The dynamical properties of the solution - like self-diffusion coefficients, hindered translations, librations, and internal vibrations of the methanol molecules - are calculated from various autocorrelation functions.


2005 ◽  
Vol 60 (3) ◽  
pp. 187-192 ◽  
Author(s):  
Masahiko Matsumiya ◽  
Koichi Seo

Molecular dynamics simulations of molten (La1/3, K)Cl at 1123 K have been performed in order to investigate the correlation between simulated dynamical properties such as the self-exchange velocity (ν), the self-diffusion coefficient (D) and the electrical conductivity (κ) and the corresponding experimental values. The simulated results revealed that v and D of potassium decrease with increasing mole fraction of lanthanum, as expected from the experimental internal cation mobilities, b. The decrease of bK, νK and DK is ascribed to the tranquilization effect by La3+, which strongly interacts with Cl−. In contrast, bLa, νLa, and DLa increase with increasing concentration of La3+. The distorted linkage of the network structure of [LaCl6]3− units was disconnected with increasing the concentration of the alkali chloride. This might be attributed to the stronger association of La3+ with Cl− due to the enhanced charge asymmetry of the two cations neighboring Cl−. The sequence of the calculated v’s, D’s, and κ’s is consistent with those of the referred experimental results.


1992 ◽  
Vol 70 (1) ◽  
pp. 34-38 ◽  
Author(s):  
Ramesh K. Wadi ◽  
Vivek Saxena

The results of a molecular dynamics (MD) simulation study of liquid chlorine trifluoride (ClF3) at 217, 260, and 287 K are reported. The cubic simulation cell consists of 108 ClF3 molecules assumed to be interacting via site–site Lennard–Jones 12–6 pair potential. The parameters for F–F and Cl–Cl interaction are the same as used for the simulation of F2, and Cl2, respectively, and those for the Cl–F cross interaction are calculated using Lorentz–Berthelot rules. These results are then used to calculate various radial distribution functions characteristic of the liquid structure. Thermodynamic properties, namely, configurational energy, constant volume specific heat, and internal pressure are also reported. The time-dependent properties, mean square force and torque, self diffusion coefficient, and the quantum corrections to the free energy, were also obtained. The dimer configuration drawn based on the observed contact distances was found to be in good agreement with the results of matrix isolation infrared and laser Raman spectroscopic studies. Keywords: MD simulation, interhalogens, liquid structure, thermodynamic properties.


2009 ◽  
Vol 289-292 ◽  
pp. 609-614 ◽  
Author(s):  
Andreas Meyer ◽  
Jürgen Horbach ◽  
O. Heinen ◽  
Dirk Holland-Moritz ◽  
T. Unruh

Self diffusion in liquid titanium was measured at 2000K by quasielastic neutron scattering (QNS) in combination with container less processing via electromagnetic levitation. At small wavenumbers q the quasielastic signal is dominated by incoherent scattering. Up to about 1.2 °A−1 the width of the quasielastic line exhibits a q2 dependence as expected for long range atomic transport, thus allowing to measure the self diffusion coefficient DTi. As a result the value DTi = (5.3± 0.2)× 10−9 m2s−1 was obtained.With a molecular dynamics (MD) computer simulation using an embedded atom model (EAM) for Ti, the self diffusion coefficient is determined from the mean square displacement as well as from the decay of the incoherent intermediate scattering function at different q. By comparing both methods, we show that the hydrodynamic prediction of a q2 dependence indeed extends up to about 1.2 °A−1. Since this result does not depend significantly on the details of the interatomic potential, our findings show that accurate values of self diffusion coefficients in liquid metals can be measured by QNS on an absolute scale.


2013 ◽  
Vol 791-793 ◽  
pp. 183-186
Author(s):  
Guo Cai Tian ◽  
Ya Dong Li

Molecular dynamics simulation method is used to study the effect of NH4Cl on the properties of Lewis acidic 1-ethyl-3-methyl-imidazolium chloride/chloroaluminate molten salts (molar ratio1:2) at the 300K. The dynamics and physical chemical properties such as diffusion coefficients, viscosity, conductivity of Lewis acidic [EmiCl/AlCl3(molar ratio1:2) with different molar fraction of NH4Cl are calculated. It is shown that the density increases firstly and reduces afterward, the conductivity decreases and viscosity increases with increasing of NH4Cl content. The self-diffusion coefficient of [Emi+, NH4+, Cl-and AlCl3reduces, and the trend to AlCl3self-diffusion is the most obvious.


Sign in / Sign up

Export Citation Format

Share Document