NQR Studies of Atomic Arrangements and Chemical Bonding in Glasses

1990 ◽  
Vol 45 (3-4) ◽  
pp. 268-272 ◽  
Author(s):  
Donghoon Lee ◽  
S. J. Gravina ◽  
P. J. Bray

Abstract A very high sensitivity continuous wave NQR spectrometer was developed to detect pure NQR transitions at low frequencies (down to 200 kHz). A signal-to-noise ratio of more than 100 to 1 has been achieved at about 1.36 MHz for crystalline B 2 0 3 . Two large n B responses have been found in vitreous B 2 0 3 (NMR detected only one site) with linewidths of less than 30 kHz. 27 A1 NQR spectra were obtained for OC-A1203 (Corundum), the mineral andalusite (a form of A1203 • Si0 2), and a glass having the composition of anorthite (CaO • A1203 • 2Si0 2).

1983 ◽  
Vol 54 (6) ◽  
pp. 1579-1584 ◽  
Author(s):  
T. K. Aldrich ◽  
J. M. Adams ◽  
N. S. Arora ◽  
D. F. Rochester

We studied the power spectrum of the diaphragm electromyogram (EMG) at frequencies between 31 and 246 Hz in four young normal subjects and five patients with chronic obstructive lung disease (COPD). Diaphragm EMGs were analyzed during spontaneous breathing and maximum inspiratory efforts to determine the effect of signal-to-noise ratio on the power spectrum and if treadmill exercise to dyspnea was associated with diaphragm fatigue. We found that the centroid frequencies of the power spectra (fc) were strongly correlated (r = 0.93) with ratios of power at high frequencies to power at low frequencies (H/L) for all subjects. Of the two indices, H/L had the largest standard deviation expressed as a percentage of the mean. The mean values of both of these decreased significantly after exercise, fc from 100.2 to 97.3 and H/L from 1.07 to 0.97. Signal-to-noise ratios were higher in maximal inspiratory efforts and after exercise in normal subjects and higher in COPD patients. The signal-to-noise ratio was correlated negatively with fc and H/L, indicating that these indices of the shape of the power spectrum are influenced by signal strength and noise levels as well as muscle function. We conclude that the fc and H/L index similar qualities of the power spectrum, that they are partially determined by the signal-to-noise ratio, and that, in some cases, exercise to dyspnea is associated with apparently mild diaphragm fatigue.


ACS Sensors ◽  
2020 ◽  
Vol 5 (12) ◽  
pp. 3979-3987
Author(s):  
Jing Su ◽  
Wenhan Liu ◽  
Shixing Chen ◽  
Wangping Deng ◽  
Yanzhi Dou ◽  
...  

2013 ◽  
Vol 38 (20) ◽  
pp. 4197 ◽  
Author(s):  
Thorsten Göbel ◽  
Dennis Stanze ◽  
Björn Globisch ◽  
Roman J. B. Dietz ◽  
Helmut Roehle ◽  
...  

1988 ◽  
Vol 132 ◽  
pp. 71-78
Author(s):  
J. P. Maillard

The multiplex properties of the Fourier Transform Spectrometer (FTS) can be considered as disadvantageous with modern detectors and large telescopes, the dominant noise source being no longer in most applications the detector noise. Nevertheless, a FTS offers a gain in information and other instrumental features remain: flexibility in choosing resolving power up to very high values, large throughput, essential in high–resolution spectroscopy with large telescopes, metrologic accuracy, automatic substraction of parasitic background. The signal–to–noise ratio in spectra can also be improved: by limiting the bandwidth with cold filters or even cold dispersers, by matching the instrument to low background foreoptics and high–image quality telescopes. The association with array detectors provides the solution for the FTS to regain its full multiplex advantage.


2011 ◽  
Vol 11 (10) ◽  
pp. 2260-2265 ◽  
Author(s):  
Zhao Fang ◽  
Ninad Mokhariwale ◽  
Feng Li ◽  
Suman Datta ◽  
Q. M. Zhang

The large magnetoelectric (ME) coupling in the ME laminates makes them attractive for ultrasensitive room temperature magnetic sensors. Here ,we investigate the field sensitivity and signal-to-noise ratio (SNR) of ME laminates, consisting of magnetostrictive and piezoelectric layers (Metglas and piezopolymer PVDF were used as the model system), which are directly integrated with a low noise readout circuit. Both the theoretical analysis and experimental results show that increasing the number of piezoelectric layers can improve the SNR, especially at low frequencies. We also introduce a figure of merit to measure the overall influence of the piezolayer properties on the SNR and show that the newly developed piezoelectric single crystals of PMN-PT and PZN-PT have the promise to achieve a very high SNR and consequently ultra-high sensitivity room temperature magnetic sensors. The results show that the ME coefficients used in early ME composites development works may not be relevant to the SNR. The results also show that enhancing the magnetostrictive coefficient, for example, by employing the flux concentration effect, can lead to enhanced SNR.


Sign in / Sign up

Export Citation Format

Share Document