A Carbon-Based DNA Framework Nano–Bio Interface for Biosensing with High Sensitivity and a High Signal-to-Noise Ratio

ACS Sensors ◽  
2020 ◽  
Vol 5 (12) ◽  
pp. 3979-3987
Author(s):  
Jing Su ◽  
Wenhan Liu ◽  
Shixing Chen ◽  
Wangping Deng ◽  
Yanzhi Dou ◽  
...  
Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7038
Author(s):  
Hui Xie ◽  
Zhuang Zhao ◽  
Jing Han ◽  
Lianfa Bai ◽  
Yi Zhang

Spectral detection provides rich spectral–temporal information with wide applications. In our previous work, we proposed a dual-path sub-Hadamard-s snapshot Hadamard transform spectrometer (Sub-s HTS). In order to reduce the complexity of the system and improve its performance, we present a convolution neural network-based method to recover the light intensity distribution from the overlapped dispersive spectra, rather than adding an extra light path to capture it directly. In this paper, we construct a network-based single-path snapshot Hadamard transform spectrometer (net-based HTS). First, we designed a light intensity recovery neural network (LIRNet) with an unmixing module (UM) and an enhanced module (EM) to recover the light intensity from the dispersive image. Then, we used the reconstructed light intensity as the original light intensity to recover high signal-to-noise ratio spectra successfully. Compared with Sub-s HTS, the net-based HTS has a more compact structure and high sensitivity. A large number of simulations and experimental results have demonstrated that the proposed net-based HTS can obtain a better-reconstructed signal-to-noise ratio spectrum than the Sub-s HTS because of its higher light throughput.


Nanophotonics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 3443-3450 ◽  
Author(s):  
Wei-Nan Liu ◽  
Rui Chen ◽  
Wei-Yi Shi ◽  
Ke-Bo Zeng ◽  
Fu-Li Zhao ◽  
...  

AbstractSelective transmission or filtering always responds to either frequency or incident angle, so as hardly to maximize signal-to-noise ratio in communication, detection and sensing. Here, we propose compact meta-filters of narrow-frequency sharp-angular transmission peak along with broad omnidirectional reflection sidebands, in all-dielectric cascaded subwavelength meta-gratings. The inherent collective resonance of waveguide-array modes and thin film approximation of meta-grating are employed as the design strategy. A unity transmission peak, locating at the incident angle of 44.4° and the center wavelength of 1550 nm, is demonstrated in a silicon meta-filter consisting of two-layer silicon rectangular meta-grating. These findings provide possibilities in cascaded meta-gratings spectroscopic design and alternative utilities for high signal-to-noise ratio applications in focus-free spatial filtering and anti-noise systems in telecommunications.


2016 ◽  
Vol 7 (2) ◽  
pp. 381 ◽  
Author(s):  
Lukas B. Gromann ◽  
Dirk Bequé ◽  
Kai Scherer ◽  
Konstantin Willer ◽  
Lorenz Birnbacher ◽  
...  

2014 ◽  
Vol 556-562 ◽  
pp. 6328-6331
Author(s):  
Su Zhen Shi ◽  
Yi Chen Zhao ◽  
Li Biao Yang ◽  
Yao Tang ◽  
Juan Li

The LIFT technology has applied in process of denoising to ensure the imaging precision of minor faults and structure in 3D coalfield seismic processing. The paper focused on the denoising process in two study areas where the LIFT technology is used. The separation of signal and noise is done firstly. Then denoising would be done in the noise data. The Data of weak effective signal that is from the noise data could be blended with the original effective signal to reconstruct the denoising data, so the result which has high signal-to-noise ratio and preserved amplitude is acquired. Thus the fact shows that LIFT is an effective denoising method for 3D seismic in coalfield and could be used widely in other work area.


2006 ◽  
Author(s):  
Stanley Wissmar ◽  
Linda Höglund ◽  
Jan Andersson ◽  
Christian Vieider ◽  
Susan Savage ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document