NQR and Crystal Structure of 4,5-Dichloroimidazole, C3H2N2Cl2

1992 ◽  
Vol 47 (1-2) ◽  
pp. 177-181 ◽  
Author(s):  
Shi-Qi Dou ◽  
Alarich Weiss

AbstractThe two line 35Cl NQR spectrum of 4,5-dichloroimidazole was measured in the temperature range 77≦ T/K ≦ 389. The temperature dependence of the NQR frequencies conforms with the Bayer model and no phase transition is indicated in the curves v ( 35Cl)= f(T). Also the temperature coefficients of the 35Cl NQR frequencies are "normal". At 77 K the 35Cl NQR frequencies are 37.409 MHz and 36.172 MHz and at 389 K 35.758 MHz and 34.565 MHz. The compound crystallizes at room temperature with the tetragonal space group D44-P41212, Z = 8 molecules per unit cell; at 295 K : a = 684.2(5) pm, c = 2414.0(20) pm. The relations between the crystal structure and the NQR spectrum are discussed.

1993 ◽  
Vol 48 (3) ◽  
pp. 491-496 ◽  
Author(s):  
Shi-qi Dou ◽  
Reha Basaran ◽  
Helmut Paulus ◽  
Alarich Weiss

Abstract The crystal structure of(-)β-(trichloromethyl)-β-propiolactone at room temperature is reported, as is the 35Cl NQR spectrum in the range 77 ≦ T/K ≦ 323.5. The compound crystallizes with the space group D24-212121, Z = 8, a = 2416.0 (10) pm, b = 975.6 (4) pm, c = 595.0 (2) pm. The intramolecular distances and angles of the two crystallographically independent (-) molecules in the unit cell are equal within the limits of error. The spread of the 35Cl NQR spectrum is within 600 kHz, not changing in the temperature range covered. The crystal structure and 35Cl NQR spectrum are discussed.The results found for the (-) compound are compared with the corresponding ones reported for the (±) compound [1], and the influence of the different intramolecular interactions in the two solid states of the chemically identical compounds on the NQR spectrum is discussed.


1978 ◽  
Vol 31 (4) ◽  
pp. 791 ◽  
Author(s):  
R Chandramani ◽  
SP Basavaraju ◽  
N Devaraj

Chlorine n.q.r, in 2,6-dichlorophenol has been investigated at temperatures from 77 K to room temperature. Two resonance lines due to chemically inequivalent sites have been observed throughout this temperature range. Torsional frequencies of the molecule have been calculated at temperatures from 77 to 300 K according to Bayer's theory and Brown's method. Also the temperature coefficients of the torsional frequencies have been calculated.


1999 ◽  
Vol 13 (29n31) ◽  
pp. 3758-3763 ◽  
Author(s):  
AUGUST YURGENS ◽  
DAG WINKLER ◽  
TORD CLAESON ◽  
SEONG-JU HWANG ◽  
JIN-HO CHOY

The c-axis tunneling properties of both pristine Bi2212 and its HgBr 2 intercalate have been measured in the temperature range 4.2-250 K. Lithographically patterned 7-10 unit-cell heigh mesa structures on the surfaces of these single crystals were investigated. Clear SIS-like tunneling curves for current applied in the c-axis direction have been observed. The dynamic conductance d I/ d V(V) shows both sharp peaks corresponding to a superconducting gap edge and a dip feature beyond the gap, followed by a wide maximum, which persists up to a room temperature. Shape of the temperature dependence of the c-axis resistance does not change after the intercalation suggesting that a coupling between CuO 2-bilayers has little effect on the pseudogap.


2018 ◽  
Vol 73 (9) ◽  
pp. 611-616
Author(s):  
Hideta Ishihara ◽  
Hisashi Honda ◽  
Ingrid Svoboda ◽  
Hartmut Fuess

AbstractThe crystal structure of [4-C2H5-C6H4NH3]2ZnBr4 (1) has been determined at 150(2) K: triclinic, P1̅, a=724.82(2), b=1194.20(4), c=1322.26(4) pm, α=74.151(3), β=80.887(3), γ=80.434(3)°, and Z=2. There are two crystallographically independent cations in the unit cell of 1: one has its benzene ring perpendicular to the crystallographic a axis of the unit cell and the other one has its benzene ring perpendicular to the c axis. These cations are alternatingly located along the c axis and form organic layers, and the ZnBr4 anions form inorganic layers in between. Zn–Br···H–N hydrogen bonds are formed between cations and anions. In accordance with the crystal structure, four nuclear quadrupole resonance (NQR) lines of 81Br were observed. The temperature dependence of the 81Br NQR frequencies between 77 and 320 K shows a peculiar feature which is not due to a structural phase transition. The measurement of 13C nuclear magnetic resonance spectra at around T=340 K indicates a redistribution of cations. The temperature dependence of 81Br NQR frequencies and differential thermal analysis measurements show that [4-C2H5-C6H4NH3]2CdBr4 (2) undergoes a structural phase transition at around 190 K.


2007 ◽  
Vol 63 (3) ◽  
pp. o1464-o1466 ◽  
Author(s):  
Wiesław Prukała ◽  
Bogdan Marciniec ◽  
Maciej Kubicki

The crystal structure of tetra-n-butylammonium iodide, C16H36N+·I−, has been redetermined at room temperature and at 100 (1) K. In the low-quality (R = 0.142) room-temperature determination by Wang, Habenschuss, Xenopoulos & Wunderlich [Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A (1995), 264, 115–129], this structure was described as crystallizing in the space group C2 with Z′ = 2. Our results prove that the correct space group is C2/c (with the same unit-cell parameters as in the original determination) at both temperatures. In the crystal structure, the iodide anions fill the voids in the grid-like cationic structure. Weak C—H...I interactions (eight per anion) strengthen this packing.


1999 ◽  
Vol 54 (3) ◽  
pp. 372-376 ◽  
Author(s):  
Andreas Komath ◽  
Oliver Blecher

Tetramethylammonium cyanide crystallizes in the tetragonal space group P4/nmm, Z = 2, with cell dimensions a = 773.6(1), c = 546.8(1) pm. The cyanide ion is disordered in the plane perpendicular to the c-axis indicating a rotation. The room temperature phase undergoes a thermal phase transition at -59.9°C probably caused by an order-disorder transition of the cyanide ion.


1975 ◽  
Vol 53 (14) ◽  
pp. 2064-2067 ◽  
Author(s):  
Hok Nam Ng ◽  
Crispin Calvo

The structure of ferric phosphate at room temperature was refined on a Dauphiné-twinned crystal using full-matrix least-squares methods. The final R value was 0.078 for 487 symmetry-independent reflections whose intensities were corrected for twinning. The structure was found to be isotypic with AlPO4 (berlinite) with the space group P3121 and four formula units in a unit cell defined by a = 5.036(2) and c = 11.255(4) Å. The structure is also closely related to that of α-quartz with a nearly doubled c-axis because of the ordering of Fe and P atoms. The PO4 tetrahedron is almost regular with a mean P—O distance of 1.526 Å. The Fe3+ ion is tetrahedrally coordinated with an average Fe—O distance of 1.853 Å.


2003 ◽  
Vol 18 (2) ◽  
pp. 537-541 ◽  
Author(s):  
Ping-chu Wang ◽  
Xiao-ming Pan ◽  
Dong-lin Li ◽  
Yuan-wei Song ◽  
Hao-su Luo ◽  
...  

Piezoelectric properties k33 and d33 of 0.67 Pb(Mg1/3Nb2/3)O3–0.33 PbTiO3 single crystals grown by a modified Bridgman method were measured in the temperature range of 20–150 °C. Recoverability of the properties after the samples were heated to 110 °C, above the ferroelectric–ferroelectric (F–F) phase transition temperature of the composition, was found. From 20 to approximately 80 °C, k33 increases slightly, while d33 is almost doubled. Between approximately 90 and 100 °C, k33 decreases sharply to roughly a level of PZT-5 ceramics and d33 decreases to about 700 pC/N. They increase again with further increase of temperature; at 140 °C they attain 0.74 and approximately 1300 pC/N, respectively, and then decrease quickly and approach zero at about 150 °C. When heating to 110 °C followed by cooling to room temperature, the property decay is small. After more than one dozen heating–cooling cycles, k33 and d33 tend to be stable at 0.89 and approximately 1220 pC/N, respectively. The results might be helpful for device design and applications of PMN–PT single crystals.


1994 ◽  
Vol 49 (1-2) ◽  
pp. 174-184
Author(s):  
Shi-qi Dou ◽  
Hartmut Fuess ◽  
Helmut Paulus ◽  
Alarich Weiss

AbstractThe 127I-NQR of(HOCH2)3CNH3+ I- was determined in the range 77 ≤ T/K ≤ 310. At T = 310 K the NQR signal fades out (Tm = 463 K). The 127I spectrum ( T =77 K.): v1 =29.195 MHz, v2 = 14.597 MHz, η(121l)=0, e QΦzz h-1 (127I) = 97.315 MHz, is in agreement with the crystal structure. The 127I NQR spectrum of 1,3-diammonium-2,2-dimethylpropane diiodide, (H3NCH2C(CH3)2CH2NH3)2+ ·2I- , is a quartet within the whole temperature range investigated, and the lines correspond to two crystallographically independent iodines: Space group P21/c, Z = 4, a = 731.2(3) pm, b = 689.0(3) pm, c = 2255.1(8) pm, β = 104.90(1)°. At 7 = 7 7 K the 127I NQR quartet is (MHz): v1 = 34.145, v2 = 32.805, v3 = 22.113, v4 = 16.787; at 295 K (same order, MHz): 30.559, 29.729, 19.810, 15.651. There are two combinations of the NQR frequencies. Considering the coordination of I-, the hydrogen bonds N -H ··· I, eQΦzzQ h-1 and η, we choose for I(1) v1 and v3, for I(2) v2 and v4. At 77 K eQΦzzQ h-1 (I(1))= 118.86 MHz,η (127I(1)) = 0.498, eQΦzzQ h-1 (I(2)) = 109.75 MHz, η(127I(2)) = 0.135 follow for the two iodine atoms. Both, eQΦzzQ h-1 (I(1)) and e eΦzzQ h-1(I(2)) decrease smoothly with increasing T: η I(2)) increases with increasing T whereas η(127I(1)) is almost constant within 77 ≤ T /K ≤ 4 0 6 . The 79,81Br NQR spectrum of l,3-diamino-2,2-dimethylpropane dihydrobromide is also a quartet, showing two crystallographic inequivalent Br atoms in the unit cell. The frequencies are (T =273 K, MHz): v1 (79Br)= 14.303, v2 (79Br)= 12.884, (81Br)= 11.951, v2(81Br) = 10.781; space group C2/c, Z = 8 , a = 2136.4(6) pm, b = 854.6(3) pm, c = 1125.8(3) pm, β = 93.23(1)°. Crystal structures and NQR results are discussed.


1996 ◽  
Vol 52 (2) ◽  
pp. 287-295 ◽  
Author(s):  
J. Zaleski ◽  
A. Pietraszko

[NH2(CH3)2]3Sb2Cl9 (dimethylammonium nonachlorodiantimonate, DMACA) has, at 200 K, a monoclinic Pc space group, with a = 9.470 (3), b = 9.034 (3), c = 14.080 (4) Å, β = 95.81 (3)°, V = 1198.4 (4) Å3, Z = 2 [R = 0.024, wR = 0.025 for 4613 independent reflections with F > 4σ(F)]. At 298 K DMACA has P21/c space group with a = 9.686 (3), b = 9.037 (3), c = 14.066 (4) Å, β = 95.57 (3)°, V = 1225.3 (5) Å3, Z = 2 [R = 0.034, wR = 0.035 for 2736 reflections with F > 4σ(F)]. The anionic sublattice of DMACA consists of polyanionic (Sb2Cl9 3−), layers. In the low-temperature phase there are three crystallographically non-equivalent dimethylammonium cations in the crystal structure. One of the cations is located inside the polyanionic layers, two others – one ordered and one disordered – between the polyanionic layers. In the room-temperature phase there are two non-equivalent cations – both disordered – in the crystal structure. Temperature dependencies of lattice parameters between 200 and 300 K were determined. The occurrence of a second-order phase transition at T = 242 K was confirmed. The dependence of lengths of Sb—Cl contacts on the presence and strength of N—H...CI hydrogen bonds was discussed. It was found that lengths of Sb—Cl bonds may differ from each other by as much as 0.3 Å, because of the presence of N—H...Cl hydrogen bonds. These differences were attributed to distortion of the lone-electron pair on antimony(Ill).


Sign in / Sign up

Export Citation Format

Share Document