An X-ray Diffraction Study of the Structure of Vitreous P2O5

1998 ◽  
Vol 53 (3-4) ◽  
pp. 93-104 ◽  
Author(s):  
Uwe Hoppe ◽  
Günter Walter ◽  
Rainer Kranold ◽  
Dörte Stachel

Abstract Recently, the lengths of the two P-O bonds in the PO4 tetrahedron were obtained by neutron diffraction of high real-space resolution. By use of the present X-ray diffraction experiments, the P-P distance belonging to pairs of corner-linked PO4 units is determined. Using this length of (294 ± 2) pm and taking into account the P-0 bond distance to the bridging oxygen atom of 158 pm, a mean P-O-P angle of 137° ± 3° is calculated. The reverse Monte Carlo simulations fit the neutron and X-ray structure factors. The P-O-P angle distribution obtained this way possesses a mean angle of 141°. An interpretation of the first scattering peaks is presented by analysing the occupancy and the distances of various co-ordination shells by use of model configurations. The low occupancy of the first shells allows the application of the schematic hole model of Dixmier. The first X-ray diffraction peak at 13 nm-1 is related to the P-P2nd shell, the shoulder at 20 nm-1 arises from the P-O2nd shell. The most similar crystalline structure with vitreous P2O5 is the orthorhombic P2O5, form II. But it has more effectively orientated terminal oxygen atoms and, thus, a higher packing than the glass.

1999 ◽  
Vol 590 ◽  
Author(s):  
V. Petkov ◽  
S. J. L. Billinge ◽  
J. Heising ◽  
M. G. Kanatzidis ◽  
S. D. Shastri ◽  
...  

ABSTRACTResults of high-energy synchrotron radiation experiments are presented demonstrating the advantages of the high-resolution atomic Pair Distribution Function technique in determining the structure of materials with intrinsic disorder.


1999 ◽  
Vol 83 (20) ◽  
pp. 4089-4092 ◽  
Author(s):  
V. Petkov ◽  
I-K. Jeong ◽  
J. S. Chung ◽  
M. F. Thorpe ◽  
S. Kycia ◽  
...  

1997 ◽  
Vol 52 (3) ◽  
pp. 259-269 ◽  
Author(s):  
Uwe Hoppe ◽  
Günter Walter ◽  
Dörte Stachel ◽  
Andrea Barz ◽  
Alex C. Hannon

Abstract The high real-space resolution of neutron diffraction experiments which is provided by use of the epithermal neutrons from spallation sources was exploited in order to differentiate the unlike P-O bonds existing in the PO4 units of phosphate glass networks. The 2 P-O distance peaks, separated by about 12 pm, which were found in the zinc and the calcium ultraphosphate glasses studied are assigned to oxygen sites on bridging (OB) and terminal (OT) positions. The mean P-O distances are nearly invariable versus the growing metal oxide content which results from an elongation of the P-OB and P-OT bonds. The bond lengths which are known from the related crystal structures and from ab initio calculations show almost the same behaviour. The discussion of further details of the crystal structures leads to the conclusion that P-OB rather than P-OT distances should show more details in case of diffraction measurements of even higher real-space resolution. The change of the Zn-O coordination number from 6 to 4 versus increasing ZnO content, which was obtained in previous X-ray diffraction experiments, is confirmed by the recent combination of neutron and X-ray diffraction data. On the other hand, the Ca-O coordination number of about 6 is almost invariable.


1992 ◽  
Vol 270 ◽  
Author(s):  
T. M. Burke ◽  
P. J. R. Honeybone ◽  
D. W. Huxley ◽  
R. J. Newport ◽  
Th. Frauenheim ◽  
...  

ABSTRACTNeutron and X-ray diffraction techniques have been applied to the study of two samples of a-Si:C:H. Both samples were prepared using conventional glow discharge methods, but the hydrocarbon/silane precursor gas was diluted with hydrogen in one case. Analysis of the X-ray diffraction data gives a clear picture of the silicon network, since the scattering profile is dominated by the Si-Si correlations. The high real-space resolution neutron diffraction data, however allows one to comment on the effect of this dilution on the silicon-carbon bonding morphology, and in particular on the degree to which the additional hydrogen enhances hetero-coordination. In addition we present the results of a preliminary computer simulation study of the structure of a-C:H and a-Si:H using an approximate molecular dynamic density functional theory, and discuss its viability in the study of the more complex a-Si:C:H ternary alloy.


2000 ◽  
Vol 62 (2) ◽  
pp. 1203-1211 ◽  
Author(s):  
S. J. L. Billinge ◽  
Th. Proffen ◽  
V. Petkov ◽  
J. L. Sarrao ◽  
S. Kycia

2021 ◽  
Vol 24 (3) ◽  
pp. 312-318
Author(s):  
A.V. Stronski ◽  
◽  
T.S. Kavetskyy ◽  
L.O. Revutska ◽  
I. Kaban ◽  
...  

The parameters of the boson peak (BP) and the first sharp diffraction peak (FSDP) in (As2S3)x(GeS2)1x glasses measured using high-resolution Raman spectroscopy and high-energy synchrotron X-ray diffraction measurements are examined as a function of x. It has been found that there is no correlation between the positions of BP and FSDP. The BP position shows a nonlinear composition behavior with a maximum at about x = 0.4, whereas the FSDP position changes virtually linearly with x. The intensities of both BP and FSDP show nonlinear composition dependences with the slope changes at x = 0.4, although there is no direct proportionality. Analysis of the partial structure factors for the glasses with x = 0.2, 0.4 and 0.6 obtained in another study has shown that the cation-cation atomic pairs of Ge–Ge, Ge–As and As–As make the largest contribution to FSDP, where the Ge–Ge and Ge–As pairs are dominant.


Author(s):  
William F. Tivol ◽  
Murray Vernon King ◽  
D. F. Parsons

Feasibility of isomorphous substitution in electron diffraction is supported by a calculation of the mean alteration of the electron-diffraction structure factors for hemoglobin crystals caused by substituting two mercury atoms per molecule, following Green, Ingram & Perutz, but with allowance for the proportionality of f to Z3/4 for electron diffraction. This yields a mean net change in F of 12.5%, as contrasted with 22.8% for x-ray diffraction.Use of the hydration chamber in electron diffraction opens prospects for examining many proteins that yield only very thin crystals not suitable for x-ray diffraction. Examination in the wet state avoids treatments that could cause translocation of the heavy-atom labels or distortion of the crystal. Combined with low-fluence techniques, it enables study of the protein in a state as close to native as possible.We have undertaken a study of crystals of rat hemoglobin by electron diffraction in the wet state. Rat hemoglobin offers a certain advantage for hydration-chamber work over other hemoglobins in that it can be crystallized from distilled water instead of salt solutions.


Author(s):  
A. R. Lang

AbstractX-ray topography provides a non-destructive method of mapping point-by-point variations in orientation and reflecting power within crystals. The discovery, made by several workers independently, that in nearly perfect crystals it was possible to detect individual dislocations by X-ray diffraction contrast started an epoch of rapid exploitation of X-ray topography as a new, general method for assessing crystal perfection. Another discovery, that of X-ray Pendellösung, led to important theoretical developments in X-ray diffraction theory and to a new and precise method for measuring structure factors on an absolute scale. Other highlights picked out for mention are studies of Frank-Read dislocation sources, the discovery of long dislocation helices and lines of coaxial dislocation loops in aluminium, of internal magnetic domain structures in Fe-3 wt.% Si, and of stacking faults in silicon and natural diamonds.


1979 ◽  
Vol 23 ◽  
pp. 333-339
Author(s):  
S. K. Gupta ◽  
B. D. Cullity

Since the measurement of residual stress by X-ray diffraction techniques is dependent on the difference in angle of a diffraction peak maximum when the sample is examined consecutively with its surface at two different angles to the diffracting planes, it is important that these diffraction angles be obtained precisely, preferably with an accuracy of ± 0.01 deg. 2θ. Similar accuracy is desired in precise lattice parameter determination. In such measurements, it is imperative that the diffractometer be well-aligned. It is in the context of diffractometer alignment with the aid of a silicon powder standard free of residual stress that the diffraction peak analysis techniques described here have been developed, preparatory to residual stress determinations.


Sign in / Sign up

Export Citation Format

Share Document