scholarly journals Controlled and Secure Direct Communication Using GHZ State and Teleportation

2004 ◽  
Vol 59 (9) ◽  
pp. 597-601 ◽  
Author(s):  
T. Gao

A theoretical scheme for controlled and secure direct communication is proposed. The communication is based on GHZ state and controlled quantum teleportation. After insuring the security of the quantum channel (a set of qubits in the GHZ state), Alice encodes the secret message directly on a sequence of particle states in the GHZ state and transmits them to Bob, supervised by Charlie using controlled quantum teleportation. Bob can read out the encoded messages directly by the measurement on his qubits. In this scheme, the controlled quantum teleportation transmits Alice’s message without revealing any information to a potential eavesdropper. Because there is not a transmission of the qubit carrying the secret messages between Alice and Bob in the public channel, it is completely secure for controlled and direct secret communication if a perfect quantum channel is used. The feature of this scheme is that the communication between two sides depends on the agreement of a third side.

2014 ◽  
Vol 28 (24) ◽  
pp. 1450194 ◽  
Author(s):  
Meiling Wang ◽  
Wenping Ma ◽  
Dongsu Shen ◽  
Xunru Yin

A new controlled quantum secure direct communication (CQSDC) protocol is presented by using a four-particle cluster state as quantum channel and the physical characteristics of controlled quantum teleportation to implement the transmission and the control. In this scheme, the receiver can receive the secret message from the sender and recover the secret message under the permission of the controller. According to the security analysis, the communication is secure against both participant and outside attacks, so this CQSDC protocol is secure and feasible.


2021 ◽  
pp. 2150249
Author(s):  
Vikram Verma

In this paper, by utilizing a nine-qubit entangled state as a quantum channel, we propose new schemes for symmetric and asymmetric cyclic controlled quantum teleportation (CYCQT). In our proposed schemes, four participants Alice, Bob, Charlie and David teleport their unknown quantum states cyclically among themselves with the help of a controller Eve. No participants can reconstruct the original states sent from the respective senders without the permission of the controller. Also, by considering same nine-qubit entangled state as a quantum channel, we propose a generalized scheme for CYCQT of multi-qubit states. In contrast to the previous CYCQT schemes involving three communicators and a controller, there are four communicators and a controller in the proposed schemes. Also, compared with previous CYCQT schemes, our proposed CYCQT schemes require less consumption of quantum resource and the intrinsic efficiency of the generalized scheme increases with the increase of number of qubits in the information states.


Author(s):  
Jinwei Wang ◽  
Liping Huang

In this paper, an asymmetric bidirectional controlled quantum teleportation via a six-qubit partially entangled state is given, in which Alice wants to transmit a two-qubit entangled state to Bob and Bob wants to transmit a single-qubit state to Alice on the same time. Although the six-qubit state as quantum channel is partially entangled, the teleportation is implemented deterministically. Furthermore, only Bell-state measurements, single-qubit measurements and some unitary operations are needed in the scheme.


2010 ◽  
Vol 08 (05) ◽  
pp. 765-778 ◽  
Author(s):  
YING GUO ◽  
Guihua Zeng

An encryption-based networking quantum teleportation scheme is proposed for the secure quantum communication network based on the novel networking quantum key distribution (NQKD) with the Greenberger–Horne–Zeilinger (GHZ) state. The security is exactly guaranteed via the entanglement of the GHZ quantum system. In the process of quantum teleportation, the server Charlie prepares the GHZ states and the users exploit the four local unitary operations corresponding to the keys shared aforehand to encrypt/decrpt for the initial messages. One legal user can communicate with another on the network securely as they may perform a quantum privacy application on the encrypted quantum states transmitted in quantum channel. Its intrinsic efficiency is high as almost all the instances are useful and each GHZ state can carry two different encrypted single-qubit states. To reconstruct these transmitted messages, the users exploit Bell measurement and perform local operations with respect to the shared keys in NQKD, which will improve its security in a noise quantum channel.


2011 ◽  
Vol 09 (supp01) ◽  
pp. 389-403 ◽  
Author(s):  
ANIRBAN PATHAK ◽  
ANINDITA BANERJEE

An efficient and economical scheme is proposed for the perfect quantum teleportation of n-qubit non-maximally entangled state of generalized Bell-type. A Bell state is used as the quantum channel in the proposed scheme. It is also shown that the controlled teleportation of this n-qubit state can be achieved by using a GHZ state or a GHZ-like state as quantum channel. The proposed schemes are economical because for the perfect and controlled teleportation of n-qubit non-maximally entangled state of generalized Bell-type, we only need a Bell state and a tripartite entangled state respectively. It is also established that there exists a family of 12 orthogonal tripartite GHZ-like states which can be used as quantum channel for controlled teleportation. The proposed protocols are critically compared with the existing protocols.


2014 ◽  
Vol 28 (15) ◽  
pp. 1450121 ◽  
Author(s):  
Dongsu Shen ◽  
Wenping Ma ◽  
Meiling Wang ◽  
Xunru Yin

A security loophole exists in Gao et al.'s controlled quantum secure direct communication protocol. By employing the security loophole, the receiver can obtain the secret message sent by the sender without the permission of the controller in their protocol. In order to avoid this loophole, we present an improved protocol in this paper. In the improved protocol, entangled particles are prepared at random in two GHZ-like states, which ensure that the receiver is not able to recover the secret message without knowing the initially entangled state. Compared with the other improved version whose security depends on the perfect quantum channel, our improved protocol is secure in a noisy quantum channel. Therefore, our protocol is more practical.


2006 ◽  
Vol 04 (06) ◽  
pp. 925-934 ◽  
Author(s):  
JIAN WANG ◽  
QUAN ZHANG ◽  
CHAOJING TANG

Most of the quantum secure direct communication protocols need a pre-established secure quantum channel. Only after ensuring the security of quantum channel can the sender encode the secret message and send it to the receiver through the secure channel. In this paper, we present a quantum secure direct communication protocol using Einstein–Podolsky–Rosen pairs and teleportation. It is unnecessary for the present protocol to ensure the security of the quantum channel before transmitting the secret message. In the present protocol, all Einstein–Podolsky–Rosen pairs are used to transmit the secret message except those chosen for eavesdropping check. We also discuss the security of our protocol under several eavesdropping attacks.


2005 ◽  
Vol 14 (5) ◽  
pp. 893-897 ◽  
Author(s):  
Gao Ting ◽  
Yan Feng-Li ◽  
Wang Zhi-Xi

Sign in / Sign up

Export Citation Format

Share Document