The Modified (G'/G)-Expansion Method for Nonlinear Evolution Equations

2011 ◽  
Vol 66 (1-2) ◽  
pp. 33-39 ◽  
Author(s):  
Sheng Zhang ◽  
Ying-Na Sun ◽  
Jin-Mei Ba ◽  
Ling Dong

A modified (Gʹ/G)-expansion method is proposed to construct exact solutions of nonlinear evolution equations. To illustrate the validity and advantages of the method, the (3+1)-dimensional potential Yu-Toda-Sasa-Fukuyama (YTSF) equation is considered and more general travelling wave solutions are obtained. Some of the obtained solutions, namely hyperbolic function solutions, trigonometric function solutions, and rational solutions contain an explicit linear function of the variables in the considered equation. It is shown that the proposed method provides a more powerful mathematical tool for solving nonlinear evolution equations in mathematical physics.

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Guiying Chen ◽  
Xiangpeng Xin ◽  
Hanze Liu

Theexp(-Φ(ξ))-expansion method is improved by presenting a new auxiliary ordinary differential equation forΦ(ξ). By using this method, new exact traveling wave solutions of two important nonlinear evolution equations, i.e., the ill-posed Boussinesq equation and the unstable nonlinear Schrödinger equation, are constructed. The obtained solutions contain Jacobi elliptic function solutions which can be degenerated to the hyperbolic function solutions and the trigonometric function solutions. The present method is very concise and effective and can be applied to other types of nonlinear evolution equations.


2009 ◽  
Vol 64 (9-10) ◽  
pp. 540-552
Author(s):  
Mamdouh M. Hassan

With the aid of symbolic computation and the extended F-expansion method, we construct more general types of exact non-travelling wave solutions of the (2+1)-dimensional dispersive long wave system. These solutions include single and combined Jacobi elliptic function solutions, rational solutions, hyperbolic function solutions, and trigonometric function solutions.


2019 ◽  
Vol 4 (1) ◽  
pp. 129-138 ◽  
Author(s):  
Haci Mehmet Baskonus ◽  
Hasan Bulut ◽  
Tukur Abdulkadir Sulaiman

AbstractIn this paper, a powerful sine-Gordon expansion method (SGEM) with aid of a computational program is used in constructing a new hyperbolic function solutions to one of the popular nonlinear evolution equations that arises in the field of mathematical physics, namely; longren-wave equation. We also give the 3D and 2D graphics of all the obtained solutions which are explaining new properties of model considered in this paper. Finally, we submit a comprehensive conclusion at the end of this paper.


2010 ◽  
Vol 20-23 ◽  
pp. 184-189 ◽  
Author(s):  
Bang Qing Li ◽  
Yu Lan Ma

By introducing (G′/G)-expansion method and symbolic computation software MAPLE, two types of new exact solutions are constructed for coupled mKdV equations. The solutions included trigonometric function solutions and hyperbolic function solutions. The procedure is concise and straightforward, and the method is also helpful to find exact solutions for other nonlinear evolution equations.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Yinghui He ◽  
Shaolin Li ◽  
Yao Long

This paper is concerned with a double nonlinear dispersive equation: the Sharma-Tasso-Olver equation. We propose an improvedG′/G-expansion method which is employed to investigate the solitary and periodic traveling waves of this equation. As a result, some new traveling wave solutions involving hyperbolic functions, the trigonometric functions, are obtained. When the parameters are taken as special values, the solitary wave solutions are derived from the hyperbolic function solutions, and the periodic wave solutions are derived from the trigonometric function solutions. The improvedG′/G-expansion method is straightforward, concise and effective and can be applied to other nonlinear evolution equations in mathematical physics.


2012 ◽  
Vol 2012 ◽  
pp. 1-22 ◽  
Author(s):  
M. Ali Akbar ◽  
Norhashidah Hj. Mohd. Ali ◽  
E. M. E. Zayed

A generalized and improved(G′/G)-expansion method is proposed for finding more general type and new travelling wave solutions of nonlinear evolution equations. To illustrate the novelty and advantage of the proposed method, we solve the KdV equation, the Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM) equation and the strain wave equation in microstructured solids. Abundant exact travelling wave solutions of these equations are obtained, which include the soliton, the hyperbolic function, the trigonometric function, and the rational functions. Also it is shown that the proposed method is efficient for solving nonlinear evolution equations in mathematical physics and in engineering.


2014 ◽  
Vol 1 (2) ◽  
pp. 140038 ◽  
Author(s):  
Md. Shafiqul Islam ◽  
Kamruzzaman Khan ◽  
M. Ali Akbar ◽  
Antonio Mastroberardino

The purpose of this article is to present an analytical method, namely the improved F -expansion method combined with the Riccati equation, for finding exact solutions of nonlinear evolution equations. The present method is capable of calculating all branches of solutions simultaneously, even if multiple solutions are very close and thus difficult to distinguish with numerical techniques. To verify the computational efficiency, we consider the modified Benjamin–Bona–Mahony equation and the modified Korteweg-de Vries equation. Our results reveal that the method is a very effective and straightforward way of formulating the exact travelling wave solutions of nonlinear wave equations arising in mathematical physics and engineering.


2004 ◽  
Vol 59 (12) ◽  
pp. 919-926
Author(s):  
Biao Li

By introducing a set of ordinary differential equations which possess q-deformed hyperbolic function solutions, and a new ansatz, a method is developed for constructing a series of exact analytical solutions of some nonlinear evolution equations. The proposed method is more powerful than various tanh methods, the secq-tanhq-method, generalized hyperbolic-function method, generalized Riccati equation expansion method, generalized projective Riccati equations method and other sophisticated methods. As an application of the method, an averaged dispersion-managed (DM) fiber system equation, which governs the dynamics of the core of the DM soliton, is chosen to illustrate the method. With the help of symbolic computation, rich new soliton solutions are obtained. From these solutions, some previously known solutions obtained by some authors can be recovered by means of some suitable choices of the arbitrary functions and arbitrary constants. Further, the soliton propagation and solitons interaction scenario are discussed and simulated by computer.


Sign in / Sign up

Export Citation Format

Share Document