Polysulfonylamine, XXXVI Trimethylsilyl-dimesylamin: Darstellung, NMR-spektroskopische Charakterisierung und Reaktionsfähigkeit als Silylierungsreagens / Polysulfonylamines, XXXVI Trimethylsilyl Dimesylamine: Preparation, NMR-Spectroscopic Characterization, and Reactivity as a Silylating Agent

1992 ◽  
Vol 47 (12) ◽  
pp. 1693-1700 ◽  
Author(s):  
Armand Blaschette ◽  
Elke Wieland ◽  
Thomas Hamann ◽  
Robin K. Harris

(CH3)3SiN(SO2CH3)2 (1), m. p. 69-70 °C, is obtained by metathesis of AgN(SO2CH3)2 with (CH3)3SiCl (improvement of a known procedure) or, more conveniently, by silylation of HN(SO2CH3)2 with [(CH3)3Si]2NH. The 1H, 13C and 29Si NMR solution spectra and the 29Si NMR solid-state spectrum suggest the constitution of 1 in solution (CDC13, CD2C12, CDCl2–CDCl2) to be an equilibrium mixture of the N-silylated form (CH3)3Si–N(SO2CH3)2 (I) and the O-silylated form (CH3)3Si–O–S(O)(CH3)=NSO2CH3 (II) in a molar ratio of 2:1 at room temperature, whereas in the known crystal structure of 1 only form I is present. The solid-state NMR experiment acted as a bridge between X-ray crystallography and solution-state NMR, enabling assignments of the resonances to be made with confidence to the tautomers. At room temperature, form II undergoes a rapid intramolecular 1.5-migration of silicon between oxygen centers of the two sulfonyl groups. As shown by kinetic measurements using 1H NMR spectroscopy, 1 is a highly reactive agent for silylating ketones in the presence of triethylamine. Hydroxy and thiol functions, even when sterically hindered, are silylated by 1 in uncatalyzed reactions. It is further shown that HN(SO2CH3)2 is an efficient catalyst for silylations with [(CH3)3Si]2NH.

2021 ◽  
Vol 9 ◽  
Author(s):  
Yanhong Zhu ◽  
Zhongkui Li ◽  
Pengfei Wang ◽  
Qi–Ming Qiu ◽  
Hongwei Ma ◽  
...  

A detailed understanding of the mismatched base-pairing interactions in DNA will help reveal genetic diseases and provide a theoretical basis for the development of targeted drugs. Here, we utilized mononucleotide fragment to simulate mismatch DNA interactions in a local hydrophobic microenvironment. The bipyridyl-type bridging ligands were employed as a mild stabilizer to stabilize the GG mismatch containing complexes, allowing mismatch to be visualized based on X-ray crystallography. Five single crystals of 2′-deoxyguanosine–5′–monophosphate (dGMP) metal complexes were designed and obtained via the process of self-assembly. Crystallographic studies clearly reveal the details of the supramolecular interaction between mononucleotides and guest intercalators. A novel guanine–guanine base mismatch pattern with unusual (high anti)–(high anti) type of arrangement around the glycosidic angle conformations was successfully constructed. The solution state 1H–NMR, ESI–MS spectrum studies, and UV titration experiments emphasize the robustness of this g–motif in solution. Additionally, we combined the methods of single-crystal and solution-, solid-state CD spectrum together to discuss the chirality of the complexes. The complexes containing the g–motif structure, which reduces the energy of the system, following the solid-state CD signals, generally move in the long-wave direction. These results provided a new mismatched base pairing, that is g–motif. The interaction mode and full characterizations of g–motif will contribute to the study of the mismatched DNA interaction.


2015 ◽  
Vol 93 (11) ◽  
pp. 1161-1168 ◽  
Author(s):  
M. Monarul Islam ◽  
Tomiyasu Hirotsugu ◽  
Taisuke Matsumoto ◽  
Junji Tanaka ◽  
Takehiko Yamato

A series of syn-[3.3]metacyclophanes (MCPs) containing internal substituted benzyloxy group have been synthesized by the modified TosMIC coupling reaction followed by acid treatment and Wolff–Kishner reduction. anti-Mono- and di-benzyloxy[3.3]MCPs are synthesized by O-benzylation of the corresponding hydroxy[3.3]MCPs, which are obtained by demethylation of methoxy[3.3]MCPs with BBr3 at room temperature. An interesting and intriguing result was obtained when syn-6,15-di-tert-butyl-9-methoxy-18-methyl[3.3]MCP-2,11-dione was treated with TMSI to afford the formation of a dihydrobenzofuran ring by a nucleophilic intramolecular cyclization reaction. The 1H NMR and X-ray analysis of 6a confirms that it adopts a syn (chair–chair) conformation in both solution and solid state.


2000 ◽  
Vol 78 (9) ◽  
pp. 1214-1221 ◽  
Author(s):  
John E Drake ◽  
Jincai Yang

O-alkyl monothiocarbonate (monoxanthate) derivatives of tin were obtained by the reaction of a sodium salt of the monothiocarbonic acid with an organotin chloride to give Ph3Sn[SCO2R], Ph2Sn[SCO2R]2, and Me3Sn[SCO2R], where R = Me and i-Pr. The compounds have been characterized by infrared, Raman, 1H NMR, and 13C NMR spectroscopy, as well as mass spectrometry, and in two cases by X-ray crystallography. Ph3Sn[SCO2Me] (1) and Ph3Sn[SCO2(i-Pr)] (2), crystallize in the triclinic space group P[Formula: see text] (no. 2) with cell parameters a = 10.218(4), b = 10.568(6), c = 9.366(7) Å, α = 106.73(5), β = 96.99(5), γ = 85.55(4)°, V = 960(1) Å3, and Z = 2 for 1; and a = 14.793(2), b = 17.856(3), c = 9.813(3) Å, α = 103.86(5), β = 98.36(5), γ = 106.85(4)°, V = 2343(1) Å3, and Z = 2 for 2. The latter has two molecules in the asymmetric unit. The immediate environment about tin in both 1 and 2 is that of the expected distorted tetrahedron. However, the orientation of the monothiocarbonate group is such that there is an Sn-O intramolecular interaction of 3.040(8) for 1 and 3.05(2) Å on average for 2. Thus, the considerable distortion is consistent with a tendency to form a five-coordinate, trigonal bipyramidal species with one of the O-Sn-C angles approaching 180o (153.4(4) for 1 and an average of 157.1(6) for 2). Estimations of the Pauling partial bond orders suggest this weak Sn-O interaction is slightly stronger than the corresponding Ge-O interaction in the analogous germanium derivative, Ph3Ge[SCO2Me].Key words: structure, tin, methyl, phenyl, isopropyl, monothiocarbonates.


2012 ◽  
Vol 8 ◽  
pp. 246-252 ◽  
Author(s):  
Nicholas G White ◽  
Paul D Beer

A ferrocene bis(triazole) macrocycle was synthesised in good yield by the Eglinton coupling of an acyclic bis(alkyne) precursor and characterised in the solid state by X-ray crystallography. Alkylation gives the corresponding triazolium macrocycle, which binds chloride and benzoate strongly in CD3CN solution through favourable charge-assisted C–H···anion interactions, as evidenced by 1H NMR titration experiments. Preliminary electrochemical studies reveal that the redox-active macrocycle is capable of sensing chloride in CH3CN solution.


2016 ◽  
Vol 12 ◽  
pp. 863-873 ◽  
Author(s):  
Shaojin Gu ◽  
Jiehao Du ◽  
Jingjing Huang ◽  
Huan Xia ◽  
Ling Yang ◽  
...  

A series of copper complexes (3–6) stabilized by 1,2,3-triazole-tethered N-heterocyclic carbene ligands have been prepared via simple reaction of imidazolium salts with copper powder in good yields. The structures of bi- and trinuclear copper complexes were fully characterized by NMR, elemental analysis (EA), and X-ray crystallography. In particular, [Cu2(L2)2](PF6)2 (3) and [Cu2(L3)2](PF6)2 (4) were dinuclear copper complexes. Complexes [Cu3(L4)2](PF6)3 (5) and [Cu3(L5)2](PF6)3 (6) consist of a triangular Cu3 core. These structures vary depending on the imidazolium backbone and N substituents. The copper–NHC complexes tested are highly active for the Cu-catalyzed azide–alkyne cycloaddition (CuAAC) reaction in an air atmosphere at room temperature in a CH3CN solution. Complex 4 is the most efficient catalyst among these polynuclear complexes in an air atmosphere at room temperature.


2013 ◽  
Vol 69 (12) ◽  
pp. 1437-1447 ◽  
Author(s):  
Madeleine Schultz ◽  
Philipp-Nikolaus Plessow ◽  
Frank Rominger ◽  
Laura Weigel

The complex [1,2-bis(di-tert-butylphosphanyl)ethane-κ2P,P′]diiodidonickel(II), [NiI2(C18H40P2] or (dtbpe-κ2P)NiI2, [dtbpe is 1,2-bis(di-tert-butylphosphanyl)ethane], is bright blue–green in the solid state and in solution, but, contrary to the structure predicted for a blue or green nickel(II) bis(phosphine) complex, it is found to be close to square planar in the solid state. The solution structure is deduced to be similar, because the optical spectra measured in solution and in the solid state contain similar absorptions. In solution at room temperature, no31P{1H} NMR resonance is observed, but the very small solid-state magnetic moment at temperatures down to 4 K indicates that the weak paramagnetism of this nickel(II) complex can be ascribed to temperature independent paramagnetism, and that the complex has no unpaired electrons. The red [1,2-bis(di-tert-butylphosphanyl)ethane-κ2P,P′]dichloridonickel(II), [NiCl2(C18H40P2] or (dtbpe-κ2P)NiCl2, is very close to square planar and very weakly paramagnetic in the solid state and in solution, while the maroon [1,2-bis(di-tert-butylphosphanyl)ethane-κ2P,P′]dibromidonickel(II), [NiBr2(C18H40P2] or (dtbpe-κ2P)NiBr2, is isostructural with the diiodide in the solid state, and displays paramagnetism intermediate between that of the dichloride and the diiodide in the solid state and in solution. Density functional calculations demonstrate that distortion from an ideal square plane for these complexes occurs on a flat potential energy surface. The calculations reproduce the observed structures and colours, and explain the trends observed for these and similar complexes. Although theoretical investigation identified magnetic-dipole-allowed excitations that are characteristic for temperature-independent paramagnetism (TIP), theory predicts the molecules to be diamagnetic.


2004 ◽  
Vol 59 (3) ◽  
pp. 291-297 ◽  
Author(s):  
Andreas Sofetis ◽  
Giannis S. Papaefstathiou ◽  
Aris Terzis ◽  
Catherine P. Raptopoulou ◽  
Theodoros F. Zafiropoulos

The reaction of Ga2(SO4)3·18H2O and excess 2,2′:6′,2″-terpyridine (terpy) in MeOH / H2O leads to [Ga(OH)(SO4)(terpy)(H2O)]·H2O (1·H2O] in good yield. The structure of the complex has been determined by single-crystal X-ray crystallography. The GaIII atom in 1·H2O is 6-coordinate and ligation is provided by one terdentate terpy molecule, one monodentate sulfate, one terminal hydroxide and one terminal H2O molecule; the coodination polyhedron about the metal is described as a distorted octahedron. There is an extensive hydrogen-bonding network in the crystal structure which generates corrugated layers parallel to bc. The new complex was characterized by IR and 1H NMR spectroscopy. The spectroscopic data are discussed in terms of the nature of bonding


2015 ◽  
Vol 71 (7) ◽  
pp. 578-583 ◽  
Author(s):  
William Clegg ◽  
Ross W. Harrington ◽  
Kazem Barati ◽  
Mohammad Hossein Habibi ◽  
Morteza Montazerozohori ◽  
...  

Reaction of copper(I) thiocyanate and triphenylphosphane with the bidentate Schiff baseN,N′-bis(trans-2-nitrocinnamaldehyde)ethylenediamine {Nca2en, (1); systematic name (1E,1′E,2E,2′E)-N,N′-(ethane-1,2-diyl)bis[3-(2-nitrophenyl)prop-2-en-1-imine]}, C20H18N4O4, in a 1:1:1 molar ratio in acetonitrile resulted in the formation of the complex {(1E,1′E,2E,2′E)-N,N′-(ethane-1,2-diyl)bis[3-(2-nitrophenyl)prop-2-en-1-imine]-κ2N,N′}(thiocyanato-κN)(triphenylphosphane-κP)copper(I)], [Cu(NCS)(C20H18N4O4)(C18H15P)] or [Cu(NCS)(Nca2en)(PPh3)], (2). The Schiff base and copper(I) complex have been characterized by elemental analyses, IR, electronic and1H NMR spectroscopy, and X-ray crystallography [from synchrotron data for (1)]. The molecule of (1) lies on a crystallographic inversion centre, with atransconformation for the ethylenediamine unit, and displays significant twists from coplanarity of its nitro group, aromatic ring, conjugated chain and especially ethylenediamine segments. It acts as a bidentate ligand coordinatingviathe imine N atoms to the CuIatom in complex (2), in which the ethylenediamine unit necessarily adopts a somewhat flattenedgaucheconformation, resulting in a rather bowed shape overall for the ligand. The NCS−ligand is coordinated through its N atom. The geometry around the CuIatom is distorted tetrahedral, with a small N—Cu—N bite angle of 81.56 (12)° and an enlarged opposite angle of 117.29 (9)° for SCN—Cu—P. Comparisons are made with the analogous Schiff base having no nitro substituents and with metal complexes of both ligands.


2011 ◽  
Vol 8 (s1) ◽  
pp. S113-S118
Author(s):  
Disha Jain Alok Chaturvedi ◽  
R.K. Upadhayay

The reaction of lead(II) dichloride with ammonium salts ofO,O'-ditolyldithiophosphoric acid have been carried out in 1:2 molar ratio by refluxing in benzene. These compounds have been further used to synthesize the adduct of the type lead(II)bis{O,O'-ditolyldithiophosphates}.2,2'-bipyridyl and lead(II)bis {O,O'-ditolyldithiophosphates}.1,10-phenanthroline by the reaction of lead(II)bis{O,O'-ditolyldithiophosphates} and 2,2'-bipyridyl and 1,10-phenanthro-line in the presence of unimolar dichloromethane and ethanol. All these complexes have been characterized by spectroscopic techniques such as IR,1H NMR and31P NMR. On the basis of spectroscopic studies tetracoordinated nature of lead atom in ditolyldithiophosphates complexes and hexacoordinated nature in their adducts have been established.


2005 ◽  
Vol 83 (12) ◽  
pp. 2073-2081 ◽  
Author(s):  
Mehdi Amirnasr ◽  
Vratislav Langer ◽  
Nahid Rasouli ◽  
Mehdi Salehi ◽  
Soraia Meghdadi

The trans-[CoIII(acacen)(ta)2]ClO4 (1) and trans-[CoIII((BA)2en)(ta)2]PF6 (2) complexes, where H2acacen = bis(acetylacetone)ethylenediimine, H2(BA)2en = bis(benzoylacetone)ethylenediimine, and ta = thioacetamide, have been synthesized by a solid-state method, and characterized by elemental analyses, IR, UV–vis, and 1H NMR spectroscopy. The crystal and molecular structures of 1 and 2 were determined by X-ray crystallography. Both compounds crystallize in the monoclinic space group P2/n. The ClO4 and PF6 ions are both disordered, ClO4 on a twofold axis in 1 and PF6 on an inversion center in 2. Also bridging N-CH2-CH2-N is disordered in both compounds. The octahedral coordination of Co(III) is slightly distorted in both cases. The thioacetamide ligands are S-bonded and occupy the axial position. The IR, UV–vis, and 1H NMR spectra of the two complexes and their solvatochromic properties are also discussed. The longest wavelength absorption that appears at 517 nm for 1 and at 528 nm for 2 in chloroform is solvent dependent, and is assigned as a metal-mediated ligand-to-ligand charge transfer (LLCT).Key words: solid-state synthesis, thioactamide, Co(III) (Schiff base), crystal structure, solvatochromism, metal-mediated LLCT.


Sign in / Sign up

Export Citation Format

Share Document