scholarly journals A ferrocene redox-active triazolium macrocycle that binds and senses chloride

2012 ◽  
Vol 8 ◽  
pp. 246-252 ◽  
Author(s):  
Nicholas G White ◽  
Paul D Beer

A ferrocene bis(triazole) macrocycle was synthesised in good yield by the Eglinton coupling of an acyclic bis(alkyne) precursor and characterised in the solid state by X-ray crystallography. Alkylation gives the corresponding triazolium macrocycle, which binds chloride and benzoate strongly in CD3CN solution through favourable charge-assisted C–H···anion interactions, as evidenced by 1H NMR titration experiments. Preliminary electrochemical studies reveal that the redox-active macrocycle is capable of sensing chloride in CH3CN solution.


2020 ◽  
Vol 49 (17) ◽  
pp. 5513-5522
Author(s):  
Beatrice Berti ◽  
Cristiana Cesari ◽  
Cristina Femoni ◽  
Tiziana Funaioli ◽  
Maria Carmela Iapalucci ◽  
...  

Redox active molecular Ni–Pd alloy nanoclusters were obtained by redox condensation, their total structures and metal distribution were determined by X-ray crystallography, and their electron-sink behavior was ascertained by electrochemical studies.



2004 ◽  
Vol 59 (3) ◽  
pp. 291-297 ◽  
Author(s):  
Andreas Sofetis ◽  
Giannis S. Papaefstathiou ◽  
Aris Terzis ◽  
Catherine P. Raptopoulou ◽  
Theodoros F. Zafiropoulos

The reaction of Ga2(SO4)3·18H2O and excess 2,2′:6′,2″-terpyridine (terpy) in MeOH / H2O leads to [Ga(OH)(SO4)(terpy)(H2O)]·H2O (1·H2O] in good yield. The structure of the complex has been determined by single-crystal X-ray crystallography. The GaIII atom in 1·H2O is 6-coordinate and ligation is provided by one terdentate terpy molecule, one monodentate sulfate, one terminal hydroxide and one terminal H2O molecule; the coodination polyhedron about the metal is described as a distorted octahedron. There is an extensive hydrogen-bonding network in the crystal structure which generates corrugated layers parallel to bc. The new complex was characterized by IR and 1H NMR spectroscopy. The spectroscopic data are discussed in terms of the nature of bonding



2005 ◽  
Vol 83 (12) ◽  
pp. 2073-2081 ◽  
Author(s):  
Mehdi Amirnasr ◽  
Vratislav Langer ◽  
Nahid Rasouli ◽  
Mehdi Salehi ◽  
Soraia Meghdadi

The trans-[CoIII(acacen)(ta)2]ClO4 (1) and trans-[CoIII((BA)2en)(ta)2]PF6 (2) complexes, where H2acacen = bis(acetylacetone)ethylenediimine, H2(BA)2en = bis(benzoylacetone)ethylenediimine, and ta = thioacetamide, have been synthesized by a solid-state method, and characterized by elemental analyses, IR, UV–vis, and 1H NMR spectroscopy. The crystal and molecular structures of 1 and 2 were determined by X-ray crystallography. Both compounds crystallize in the monoclinic space group P2/n. The ClO4 and PF6 ions are both disordered, ClO4 on a twofold axis in 1 and PF6 on an inversion center in 2. Also bridging N-CH2-CH2-N is disordered in both compounds. The octahedral coordination of Co(III) is slightly distorted in both cases. The thioacetamide ligands are S-bonded and occupy the axial position. The IR, UV–vis, and 1H NMR spectra of the two complexes and their solvatochromic properties are also discussed. The longest wavelength absorption that appears at 517 nm for 1 and at 528 nm for 2 in chloroform is solvent dependent, and is assigned as a metal-mediated ligand-to-ligand charge transfer (LLCT).Key words: solid-state synthesis, thioactamide, Co(III) (Schiff base), crystal structure, solvatochromism, metal-mediated LLCT.



2007 ◽  
Vol 85 (7-8) ◽  
pp. 461-465
Author(s):  
Christopher O Bender ◽  
René T Boeré ◽  
Peter W Dibble ◽  
Ryan T McKay

The 2:1 adduct of benzyne with 2-methylanisole is shown to have the bisbenzotricyclic structure 6,6a,11,11a-tetrahydro-5-methoxy-6-methyl-5,6,11-metheno-5H-benzo[a]fluorene by a single-crystal X-ray diffraction study (C20H18O: Pca21, a = 15.0497(17), b = 9.87783(11), c = 9.6846(11); Z = 4; 1672 data points, R1 = 0.0325). This structure is compared to an unpublished crystal structure of the parent hydrocarbon 6,6a,11,11a-tetrahydro-5,6,11-metheno-5H-benzo[a]fluorene, C18H14. Both structures have also been computed by DFT methods at the B3LYP/6-311(d,p) level of theory. Bond distances and angles between the solid-state measurements and gas-phase calculations are found to agree well; average deviations are well below 1%. The 1H NMR spectra show surprisingly small 3JHH couplings in the central tricyclic cage, but can be assigned using 2D spectroscopy.Key words: Hydrocarbon cages, strained rings, cyclopropane, X-ray crystallography, NMR.



1995 ◽  
Vol 50 (7) ◽  
pp. 1018-1024 ◽  
Author(s):  
Axel Michalides ◽  
Dagmar Henschel ◽  
Armand Blaschette ◽  
Peter G. Jones

In a systematic search for supramolecular complexes involving all combinations of the cyclic polyethers 12-crown-4 (12C4), 15-crown-5 (15C 5), 18-crown-6 (18C 6) and dibenzo- 18-crown-6 (DB -18C6), and the geminal di- or trisulfones H2C(SO 2Me)2, H2C (SO2Et)2 and HC (SO2Me)3-n (SO2Et)n (n = 0 -3 ) , only the following four complexes could be isolated and unequivocally characterized by elemental analysis and 1H NMR spectroscopy: [(12C4){H2C (SO2Et)2}2] (3), [(18C6){H2C (S O2Me)2}] (4), [(DB -18C 6){H2C (SO2Et)2}] (5) and [(D B -18C 6)2{HC (SO2Me )(SO2Et)2}3] (6). The structure of 3 (triclinic, space group P1̄) consists of crystallographically centrosymmetric formula units, in which the disulfone molecules are bonded on each side of the ring by two C -H ··· O(crown) interactions originating from the central methylene group (H···O 213 pm) and from the methylene group of one EtSO2 moiety ( H ··· O 237 pm). Formula units related by translation are connected into parallel strands by a third type of reciprocal C -H ···O bond (H ···O 232 pm) between the second H atom of the central methylene group and a sulfonyl oxygen atom of the adjacent unit. The structure of 4 (monoclinic, space group C2/c) showed severe disorder of the crown ether and could not be refined satisfactorily. Compounds 5 and 6 crystallized as long and extremely thin fibres, indicative of linear-polymeric supramolecular structures; single crystals for X-ray crystallography were not available.



2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Koji Kato ◽  
Naoyuki Miyazaki ◽  
Tasuku Hamaguchi ◽  
Yoshiki Nakajima ◽  
Fusamichi Akita ◽  
...  

AbstractPhotosystem II (PSII) plays a key role in water-splitting and oxygen evolution. X-ray crystallography has revealed its atomic structure and some intermediate structures. However, these structures are in the crystalline state and its final state structure has not been solved. Here we analyzed the structure of PSII in solution at 1.95 Å resolution by single-particle cryo-electron microscopy (cryo-EM). The structure obtained is similar to the crystal structure, but a PsbY subunit was visible in the cryo-EM structure, indicating that it represents its physiological state more closely. Electron beam damage was observed at a high-dose in the regions that were easily affected by redox states, and reducing the beam dosage by reducing frames from 50 to 2 yielded a similar resolution but reduced the damage remarkably. This study will serve as a good indicator for determining damage-free cryo-EM structures of not only PSII but also all biological samples, especially redox-active metalloproteins.



1999 ◽  
Vol 23 (11) ◽  
pp. 670-671
Author(s):  
Larisa A. Kovbasyuk ◽  
Olga Yu. Vassilyeva ◽  
Vladimir N. Kokozay ◽  
Wolfgang Linert ◽  
Paul R. Raithby

The mixed-metal mixed-halide complex [CuPbBrlL2]2 has been prepared by the direct interaction of zerovalent copper with lead halides and 2-dimethylaminoethanol (HL) in dmso and has been characterized by X-ray crystallography; the structure shows a layer arrangement of the tetranuclear metal units through the μ3-halogen bridging.



2001 ◽  
Vol 79 (3) ◽  
pp. 263-271
Author(s):  
Paul K Baker ◽  
Michael GB Drew ◽  
Deborah S Evans

Reaction of [WI2(CO)3(NCMe)2] with two equivalents of 1-phenyl-1-propyne (MeC2Ph) in CH2Cl2, and in the absence of light, gave the bis(1-phenyl-1-propyne) complex [WI2(CO)(NCMe)(η2-MeC2Ph)2] (1) in 77% yield. Treatment of equimolar quantities of 1 and NCR (R = Et, i-Pr, t-Bu, Ph) in CH2Cl2 afforded the nitrile-exchanged products, [WI2(CO)(NCR)(η2-MeC2Ph)2] (2-5) (R = Et (2), i-Pr (3), t-Bu (4), Ph (5)). Complexes 1, 2, and 5 were structurally characterized by X-ray crystallography. All three structures have the same pseudo-octahedral geometry, with the equatorial sites being occupied by cis and parallel alkyne groups, which are trans to the cis-iodo groups. The trans carbon monoxide and acetonitrile ligands occupy the axial sites. In structures 1 and 2, the methyl and phenyl substituents of the 1-phenyl-1-propyne ligands are cis to each other, whereas for the bulkier NCPh complex (5), the methyl and phenyl groups are trans to one another. This is the first time that this arrangement has been observed in the solid state in bis(alkyne) complexes of this type.Key words: bis(1-phenyl-1-propyne), carbonyl, nitrile, diiodo, tungsten(II), crystal structures.



1985 ◽  
Vol 63 (11) ◽  
pp. 2915-2921 ◽  
Author(s):  
Ian M. Piper ◽  
David B. MacLean ◽  
Romolo Faggiani ◽  
Colin J. L. Lock ◽  
Walter A. Szarek

The products of a Pictet–Spengler condensation of tryptamine and of histamine with 2,5-anhydro-D-mannose have been studied by X-ray crystallography to establish their absolute configuration. 1(S)-(α-D-Arabinofuranosyl)-1,2,3,4-tetrahydro-β-carboline (1), C16H20N20O4, is monoclinic, P21 (No. 4), with cell dimensions a = 13.091(4), b = 5.365(1), c = 11.323(3) Å, β = 115.78(2)°, and Z = 2. 4-(α-D-Arabinofuranosyl)imidazo[4,5-c]-4,5,6,7-tetrahydropyridine (3), C11H17N3O4, is orthorhombic, P212121 (No. 19), with cell dimensions a = 8.118(2), b = 13.715(4), c = 10.963(3) Å, and Z = 4. The structures were determined by direct methods and refined to R1 = 0.0514, R2 = 0.0642 for 3210 reflections in the case of 1, and to R1 = 0.0312, R2 = 0.0335 for 1569 reflections in the case of 3. Bond lengths and angles within both molecules are normal and agree well with those observed in related structures. In 3 the base and sugar adopt a syn arrangement, which is maintained by an internal hydrogen bond between O(2′) and N(3). The sugar adopts a normal 2T3 twist conformation. The sugar has the opposite anti arrangement in the β-carboline 1 and the conformation of the sugar is unusual; it is close to an envelope conformation with O(4′) being the atom out of the plane. This conformation is caused by a strong intermolecular hydrogen bond from O(5′) in a symmetry-related molecule to O(4′). Both compounds are held together in the crystal by extensive hydrogen-bonding networks. The conformations of the compounds in solution have been investigated by 1H nmr spectroscopy, and the results obtained were compared with those obtained by X-ray crystallography for 1 and 3.



2012 ◽  
Vol 16 (01) ◽  
pp. 154-162 ◽  
Author(s):  
Edwin W.Y. Wong ◽  
Daniel B. Leznoff

The reduction of magnesium phthalocyanine (MgPc) with 2.2 equivalents of potassium graphite in 1,2-dimethoxyethane (DME) gives [K2(DME)4]PcMg(OH)(1) in 67% yield. Compound 1 was structurally characterized using single crystal X-ray crystallography and was found to be a monomeric, heterometallic complex consisting of a μ3-OH ligand that bridges a [MgIIPc3-]- anion to two potassium cations solvated by four DME molecules. An absorption spectrum of 1 confirms the Pc ligand is singly reduced and has a 3–charge. The solid-state structure of 1 does not indicate breaking of the aromaticity of the Pc ligand. Compound 1 is only the second Pc3- complex and the first reduced MgPc to be isolated and structurally characterized.



Sign in / Sign up

Export Citation Format

Share Document