Substituenteneinflüsse auf Synthese und Eigenschaften von Hexakis[phosphanaurio(I)]methanium(2+)bis(tetrafluoroboraten) / Substituent Effects in Synthesis and Properties of Hexakis[phosphineaurio(I)]methanium(2 +) Bis(tetrafluoroborates)

1992 ◽  
Vol 47 (12) ◽  
pp. 1725-1735 ◽  
Author(s):  
Hubert Schmidbaur ◽  
Benno Brachthäuser ◽  
Siegfried Gamper ◽  
Annette Schier ◽  
Oliver Steigelmann

Polyaurated carbon complexes of the type [(L–Au)6C]2+ with functionalized phosphine ligands have been prepared by the reaction of the phosphinegold(I) chlorides R(Ph)2PAuCl (R = p-C6H4-Cl 2a,p-C6H4-Br 2b,p-C6H4-CH3 2c,p-C6H4-OCH3 2d,p-C6H4-COOH 2e, p-C6H4–N(CH3)2 2f), R2(Ph)PAuCl (R = p-C6H4-N(CH3)2 2g) and R3PAuCl (R = p-C6H4-N(CH3)2 2h) with tetrakis(dimethoxyboryl)methane in HMPT at room temperature. Clearly depending on the different inductive and mesomeric effects, the preparation of the clusters with substituents like –CH3 3c, –OCH3 3d and –N(CH3)2 3f needs shorter reaction times and the products show better solubility in organic solvents than those with functional groups like –Cl 3a, –Br 3b and –COOH 3e. The 31P magnetic resonance parameters are correlated with electronic effects of the substituents, but the chemical shift of the interstitial carbon atom in the 13C-NMR spectra is largely independent of the coordinating ligands. For the phosphinegold(I) chlorides 2f–h X-ray structure analyses have been performed.

Author(s):  
C. Alicia Renison ◽  
D. Bradley G. Williams ◽  
Alfred J. Muller

The study illustrates the use of the P-atom to evaluate steric and electronic effects in P-containing organic compounds. The work involves the synthesis of substituted triarylphosphines and their corresponding Rh Vaska complexes. High resolution X-ray crystallography, molecular modelling, 31P NMR spectroscopy and IR will be used to quantify substituent effects.


1990 ◽  
Vol 55 (1) ◽  
pp. 261-272 ◽  
Author(s):  
Miroslav Holík ◽  
Božena Matějková

Chemical shifts of benzene part of the title compounds have been correlated with substituent chemical shifts (SCS) increments a for 1H and z for 13C NMR spectra. These correlations gave pieces of information not only about the through-conjugation of substituents but also about the change of the twist about the central N-C bond with the change of substituent in the para-position. In such a way the electronic effects of substituents have been studied together with the effects due to conformational changes which manifest themselves with the change in the van der Waals repulsion and/or diamagnetic anisotropy of double bond. Chemical shifts in phthalimide part of molecule have been related to the electronic effect of distant substituent after separation of the main source of variation from random error by principal component analysis.


2013 ◽  
Vol 91 (6) ◽  
pp. 442-447 ◽  
Author(s):  
Hong-Xing Xin ◽  
Qi Liu ◽  
Hong Yan ◽  
Xiu-Qing Song

The stability of 1,3-dialkyl-2-formylimidazolium perchlorate 1 in solution was studied in detail and found to be related to its structure and the solvent character and temperature. 1 was stable in common solvents at room temperature and unstable in protic solvents under reflux. In protic solvents, such as H2O, MeOH, EtOH, and AcOH, 1 decarbonylated into 1,3-dialkylimidazole perchlorates 2, which was confirmed by 1H NMR, 13C NMR, HRMS, and X-ray spectroscopy. The decarbonylation of 1 was proposed to occur via its hemiacetal formed by the addition of solvents based on the tracking NMR spectra of 1 in deuterated reagents.


1994 ◽  
Vol 72 (7) ◽  
pp. 1621-1624 ◽  
Author(s):  
R.A. Bell ◽  
J.F. Britten ◽  
H.E. Howard-Lock ◽  
C.J.L. Lock ◽  
M. Schmidt

The reaction of D-penicillamine and benzaldehyde yielded 2-phenyl-5,5-dimethylthiazolidine-4-carboxylic acid. The structure was determined by single crystal X-ray diffraction. Crystals were monoclinic, P21, a = 9.785(2), b = 6.941(1), c = 10.399(2) Å, β = 114.06(3)°, Z = 2. Intensities were measured on a Rigaku AFC6R diffractometer with Cu Kα radiation and 1881 reflections were used to determine the structure. R = 0.076, wR = 0.048. The compound exists as an amino acid in the 2S,4S configuration. The conformation of the thiazolidine ring is determined by intermolecular hydrogen bonding. Bond lengths and angles are normal. 1H and 13C NMR spectra showed that epimerization takes place in d4-CH3OH solution, and the ratio of 2S,4S diastereomer to 2R,4S diastereomer at room temperature is 65:35.


1986 ◽  
Vol 51 (3) ◽  
pp. 670-676 ◽  
Author(s):  
Eva Solčániová ◽  
Štefan Toma ◽  
Tibor Liptaj

13C NMR spectra of 18 ferrocene analogues of trans stilbenes (1-aryl-2-ferrocenylethylenes) were measured. It was found that bridge group weakens the transfer of the substituent electron effects into ferrocene nucleus, especially distinctly into 3',4'positions of cyclopentadienyl ring. The transfer of substituent effects into β-position of the bridge -CH=CH- is greater in derivatives studied by us than in stilbenes. Synthesis of 1-(4-dimethylaminophenyl)-2-ferrocenylethylene is described.


1984 ◽  
Vol 39 (2) ◽  
pp. 207-212 ◽  
Author(s):  
Karl Dimroth ◽  
Rüdiger Thamm ◽  
Hans Kaletsch

New 6π-tricarbonylchromiumpyrnftne complexes 5c and 5d could be synthesized from 2,6-di-rbutyl- and 2,4,6-tri-f-butylpyridines (3c and 3d) with chromium hexacarbonyl. They are characterized by their 1H and 13C NMR Spectra and their CO-frequencies which are rather similar to those of 6π-tricarbonylchromium-2,4 ,6-triphenyl [1] or 2,4,6-trw-butyl- [2] λ3-phosphorins. When 5d is reacted with lithiumphenyl, the phenyl residue adds to C-4, giving probably compound 7, which by methanolysis and allyl rearrangement of the hydrogen atom from position 4 to position 2 affords tricarbonylchromium-2,6-di-f-butyl-4-phenyl-1,2-dihydropyridine (8) in 56% yield. The 6π-tricarbonylchromium complexes of 2,4,6-triphenyl- or 2,4,6-tn-t-butyl-λ3-phosphorins react with lithiumorganic compounds by addition only to the phosphorus atom whose reaction with methyliodide lead to tricarbonylchromium-λ5-phosphorin-ylid complexes [2], 5 d is a well crystallized compound, the X-ray analysis of the first 6π-tricarbonylchromium pyridine derivate could be performed [3] and compared with the results of the X-ray analysis of 6π-tricarbonylchromiumx 2,4,6-triphenyl-λ3-phosphorin [4]


2002 ◽  
Vol 57 (9) ◽  
pp. 1017-1026 ◽  
Author(s):  
Herbert Schumann ◽  
Susanne Stenz ◽  
Frank Girgsdies ◽  
Stefan H. Mühle

Ru3(CO)12 reacts with 1-tert-butyl-2,4-cyclopentadiene (1), 1-trimethylsilyl-2,4-cyclopentadiene (2), 1-tert-butyl-3-methyl-2,4-cyclopentadiene (3), 1,3-di(tert-butyl)-2,4-cyclopentadiene (4), 1-iso-propyl-2,3,4,5-tetramethyl-2,4-cyclopentadiene (5), 1-tert-butyl-2,3,4,5-tetramethyl- 2,4-cyclopentadiene (6), 1-phenyl-2,3,4,5-tetramethyl-2,4-cyclopentadiene (7), 2,5- diphenyl-2,4-cyclopentadiene (8), or 2,3,4,5-tetraphenyl-2,4-cyclopentadiene (9) with formation of the corresponding bis[dicarbonyl(cyclopentadienyl) ruthenium(I)] complexes [RuCp# (CO)2]2 1a to 9a. The 1H and 13C NMR spectra of the new compounds 3a and 5a to 9a as well as the single crystal X-ray structures of 1a, 4a, 5a, 7a, 8a, and 9a are reported and discussed


1984 ◽  
Vol 39 (3) ◽  
pp. 341-351 ◽  
Author(s):  
Joseph Grobe ◽  
Gerald Henkel ◽  
Bernt Krebs ◽  
Nikolaos Voulgarakis

Heterocyclic cage compounds of type I (compounds 8-10) have been prepared by condensation reactions of 1,2,2-trifunctional disilanes Me(R)XSiSiMeX2 (R = Me, Ph, OEt; X = NMe2, OEt) with triethanolamine using the “Dilution Principle”. The starting compounds are obtained by Si-Me cleavage of Si2Me6 with acetylchloride/AlCl3 followed by either aminolysis with HNMe2 or alcoholysis with EtOH. 1H NMR spectra indicate N→Si(1) intraction with the more acidic Si atom in 8 and 9. This result is proved by the X-ray structure analysis of 8 (monoclinic, P21/c; a = 7,088(2), b = 15,070(4), c = 12,701(4) Å, β = 104,96(2) at -130 °C, Z = 4); the Si(1)···N distance is found to be 2,768 Å , connected with a significant angular distortion of the tetrahedral coordination around Si(1) towards a trigonal bipyramid. In compound 10, too, N→Si(1) coordination is observed at room temperature in spite of almost equal acidity for both Si atoms. This can be explained by the preference of 5- over 6-membered chelating ring systems. At higher temperatures the 1H NMR spectra show a fluctuation of the N-donor between the two Si centres.


2018 ◽  
Vol 14 ◽  
pp. 3011-3017
Author(s):  
Akın Sağırlı ◽  
Yaşar Dürüst
Keyword(s):  
2D Nmr ◽  
X Ray ◽  
H Nmr ◽  
Tof Ms ◽  

The present work describes an unfamiliar reaction of 5-(chloromethyl)-3-substituted-phenyl-1,2,4-oxadiazoles with KCN affording trisubstituted 1,2,4-oxadiazol-5-ylacetonitriles and their parent alkanes, namely, 1,2,3-trisubstituted-1,2,4-oxadiazol-5-ylpropanes. To the best of our knowledge, the current synthetic route leading to decyanated products will be the first in terms of a decyanation process which allows the transformation of trisubstituted acetonitriles into alkanes by the incorporation of KCN with the association of in situ-formed HCN and most likely through the extrusion of cyanogen which could not be detected or isolated. In addition, the plausible mechanisms were proposed for both transformations. The structures of the title compounds were identified by means of IR, 1H NMR, 13C NMR, 2D NMR spectra, TOF–MS and X-ray measurements.


1975 ◽  
Vol 30 (9-10) ◽  
pp. 794-799 ◽  
Author(s):  
Ludger Ernst

The 13C NMR spectra of twelve amino-, dimethylamino-, diamino-, and bis(dimethylamino)naphthalenes are completely assigned by selective 13C{1H} double resonance and by interpretation of proton-coupled spectra. Strong substituent effects (Δδ) upon chemical shifts are observed and can largely be accounted for by mesomerism. The pronounced high-field shifts of C-6 in the 2-amino- and 2-dimethylaminonaphthalenes coincide with the enhanced reactivity of this position towards electrophilic reagents. In 1-dimethylaminonaphthalene and even more so in 1-dimethylamino-2-methylnaphthalene, conjugation is inhibited for steric reasons and Δδ’s are greatly diminished, thus giving an estimate for the contribution of resonance to substituent-induced shifts in the unhindered compounds. In two 1,8-disubstituted naphthalenes there are large deviations from additivity of substituent effects.


Sign in / Sign up

Export Citation Format

Share Document