Kristallstruktur, Infrarot- und Ramanspektren sowie thermische Zersetzung von Magnesiumtetrahydrogendimesoperiodat, MgH4I2O10 · 6H2O

1999 ◽  
Vol 54 (8) ◽  
pp. 999-1008 ◽  
Author(s):  
R. Nagel ◽  
M. Botova ◽  
G. Pracht ◽  
E. Suchanek ◽  
M. Maneva ◽  
...  

Crystal structure, DRIFT, infrared and Raman spectra, and the results of thermal analyses of the hitherto wrongly as Mg(H4IO6)2 · 4H20 and Mg(IO4) · 8H2O described dimesoperiodate MgH4I2O10 · 6H2O and of the isostructural zinc compound are presented. The compounds crystallize in the monoclinic space group P21 (Z = 2) with a = 1071.0(2), b = 547.0(1), c = 1194.9(2) pm, and β = 112.58(3)° and a = 1073.3(3), b = 545.3(2), c = 1188.3(5) pm, and β = 112.52(3)°, respectively. The structure, which was refined from X-ray single crystal data of the magnesium compound (R1 = 2.72%, 3824 independet reflections), is built up from isolated distorted M(H2O)62+ octahedra and dimesoperiodate ions H4I2O102- connected by a network of hydrogen bonds formed by the H4I2O102- ions and six crystallographically different hydrate H2O molecules. The strength of the hydrogen bonds ranges from unusually weak bonds corresponding to uncoupled (isotopically dilute samples) OD stretching modes of > 2600cm-1 and very strong ones (νOD: < 2200 cm-1). The IO stretching modes of the transconfigurated H4I2O102- ions are assigned to terminal I-O groups (816 cm-1), I-OH groups (746 and 762cm-1) and bridging I-O groups (618 and 647cm-1). On heating, MgH4I2O10 · 6H2O undergoes dehydration in the range of 373 - 485 K (Differential Scanning Calorimetry) to two different polymorphs of magnesium metaperiodate (H4I2O102-→2IO4- + 2H2O). Anhydrous Mg(IO4)2 is instable. Above 423 K (high-temperature Raman data), it decomposes to magnesium iodates.

2013 ◽  
Vol 454 ◽  
pp. 272-275
Author(s):  
Li Hua Wang

The crystals of 3-indolepropionic acid have been obtained by evaporation from ethanol solution. The crystal structure of the 3-indolepropionic acid was determined by X-ray single crystal diffraction analysis. The crystal data for 3-indolepropionic acid: monoclinic, space group P2(1)/c, a = 14.3592(8) Å, b = 5.2446(2) Å, c = 12.3518(6) Å, V = 926.96(8) Å3, Z = 4, Mr = 189.21, De = 1.356 g/cm3, T = 298(2) K, F (000) = 400, R = 0.0435 and wR = 0.1010. The compound forms one-dimensional chained structure through hydrogen bonds and π-π interaction.


2013 ◽  
Vol 77 (4) ◽  
pp. 429-441 ◽  
Author(s):  
J. Plášil ◽  
A. V. Kasatkin ◽  
R. Škoda ◽  
M. Novák ◽  
A. Kallistová ◽  
...  

AbstractLeydetite, monoclinic Fe(UO2)(SO4)2(H2O)11(IMA 2012–065), is a new supergene uranyl sulfate from Mas d'Alary, Lodève, Hérault, France. It forms yellow to greenish, tabular, transparent to translucent crystals up to 2 mm in size. Crystals have a vitreous lustre. Leydetite has a perfect cleavage on (001). The streak is yellowish white. Mohs hardness is ∼2. The mineral does not fluoresce under long- or short-wavelength UV radiation. Leydetite is colourless in transmitted light, non-pleochroic, biaxial, with α = 1.513(2), γ = 1.522(2) (further optical properties could not be measured). The measured chemical composition of leydetite, FeO 9.28, MgO 0.37, Al2O30.26, CuO 0.14, UO340.19, SO321.91, SiO20.18, H2O 27.67, total 100 wt.%, leads to the empirical formula (based on 21 O a.p.f.u.), (Fe0.93Mg0.07Al0.04Cu0.01)Σ1.05(U1.01O2)(S1.96Si0.02)Σ1.98O8(H2O)11. Leydetite is monoclinic, space group C2/c, with a = 11.3203(3), b = 7.7293(2), c = 21.8145(8) Å, β = 102.402(3)°, V = 1864.18(10) Å3, Z = 4, and Dcalc = 2.55 g cm–3. The six strongest reflections in the X-ray powder diffraction pattern are [dobs in Å (I) (hkl)]: 10.625 (100) (002), 6.277 (1) (11), 5.321 (66) (004), 3.549 (5) (006), 2.663 (4) (008), 2.131 (2) (0 0 10). The crystal structure has been refined from single-crystal X-ray diffraction data to R1 = 0.0224 for 5211 observed reflections with [I > 3σ(I)]. Leydetite possesses a sheet structure based upon the protasite anion topology. The sheet consists of UO7 bipyramids, which share four of their equatorial vertices with SO4 tetrahedra. Each SO4 tetrahedron, in turn, shares two of its vertices with UO7 bipyramids. The remaining unshared equatorial vertex of the bipyramid is occupied by H2O, which extends hydrogen bonds within the sheet to one of a free vertex of the SO4 tetrahedron. Sheets are stacked perpendicular to the c direction. In the interlayer, Fe2+ ions and H2O groups link to the sheets on either side via a network of hydrogen bonds. Leydetite is isostructural with the synthetic compound Mg(UO2)(SO4)2(H2O)11. The name of the new mineral honours Jean Claude Leydet (born 1961), an amateur mineralogist from Brest (France), who discovered the new mineral.


1993 ◽  
Vol 48 (7) ◽  
pp. 958-960 ◽  
Author(s):  
Otto Kumberger ◽  
Jürgen Riede ◽  
Hubert Schmidbaur

A discrete ammonium catecholate hydrate of the compositionNH4[C6H4(OH)2][C6H4(OH)O] · 0.5 H2O has been isolated and characterized by a single-crystal X-ray structure analysis. The crystals are monoclinic, space group C 2/c (No. 15), Z = 8, a = 24.613(3), b = 8.706(1), c = 11.890(2) Å, β = 110.56(1)°. The crystal lattice features a network of hydrogen bonds, which clearly contribute significantly to the overall stability of the lattice. The water molecule is engaged as a donor and an acceptor in as many as four hydrogen bonds. Surprisingly, the crystalline compound is air-stable, while anhydrous ammonium catecholate, as obtained by dissolving catechol in dry liquid ammonia, is quickly oxidized in air.


1981 ◽  
Vol 36 (10) ◽  
pp. 1208-1210 ◽  
Author(s):  
Hartmut Köpf ◽  
Joachim Pickardt

Abstract The molecular structure of the bridged [1]-titanocenophane 1,1'-dimethylsilylene titanocene dichloride, (CH3)2Si(C5H4)2TiCl2, has been investigated by an X-ray structure determination. Crystal data: monoclinic, space group C2/c, Z = 4, a = 1332.9(3), 6 = 988.7(3), c = 1068.9(3) pm, β = 113.43(2)°. The results are compared with the structural dimensions of similar compounds: 1,1'-methylene titanocene dichloride, CH2(C5H4)TiCl2, with the unbridged titanocene dichloride, (C5H5)2TiCl2 and the ethylene-bridged compound (CH2)2(C5H4)2TiCl2


1992 ◽  
Vol 47 (3) ◽  
pp. 305-309 ◽  
Author(s):  
Anja Edelmann ◽  
Sally Brooker ◽  
Norbert Bertel ◽  
Mathias Noltemeyer ◽  
Herbert W. Roesky ◽  
...  

Abstract The Molecular Structures of [2,4,6-(CF3)3C6H2S]2 (1) [2,4,6-Me3C6H2Te]2 and [2-Me2N-4,6-(CF3)2C6H2Te]2 (3) have been determined by X-ray diffraction. Crystal data: 1: orthorhombic, space group P212121, Z = 4, a = 822.3(2), b = 1029.2(2), c = 2526.6(5) pm (2343 observed independent reflexions, R = 0.042); 2: orthorhombic, space group Iba 2, Z = 8, a = 1546.5(2), b = 1578.4(2), c = 1483.9(1) pm (2051 observed independent reflexions, R = 0.030); 3: monoclinic, space group P 21/c, Z = 4, a = 1118.7(1), b = 1536.5(2), c = 1492.6(2) pm, β = 98.97(1)° (3033 observed independent reflexions, R = 0.025).


Author(s):  
Mateusz Gołdyn ◽  
Anna Komasa ◽  
Mateusz Pawlaczyk ◽  
Aneta Lewandowska ◽  
Elżbieta Bartoszak-Adamska

The study of various forms of pharmaceutical substances with specific physicochemical properties suitable for putting them on the market is one of the elements of research in the pharmaceutical industry. A large proportion of active pharmaceutical ingredients (APIs) occur in the salt form. The use of an acidic coformer with a given structure and a suitable pK a value towards purine alkaloids containing a basic imidazole N atom can lead to salt formation. In this work, 2,6-dihydroxybenzoic acid (26DHBA) was used for cocrystallization of theobromine (TBR) and caffeine (CAF). Two novel salts, namely, theobrominium 2,6-dihydroxybenzoate, C7H9N4O2 +·C7H5O4 − (I), and caffeinium 2,6-dihydroxybenzoate, C8H11N4O2 +·C7H5O4 − (II), were synthesized. Both salts were obtained independently by slow evaporation from solution, by neat grinding and also by microwave-assisted slurry cocrystallization. Powder X-ray diffraction measurements proved the formation of the new substances. Single-crystal X-ray diffraction studies confirmed proton transfer between the given alkaloid and 26DHBA, and the formation of N—H...O hydrogen bonds in both I and II. Unlike the caffeine cations in II, the theobromine cations in I are paired by noncovalent N—H...O=C interactions and a cyclic array is observed. As expected, the two hydroxy groups in the 26DHBA anion in both salts are involved in two intramolecular O—H...O hydrogen bonds. C—H...O and π–π interactions further stabilize the crystal structures of both compounds. Steady-state UV–Vis spectroscopy showed changes in the water solubility of xanthines after ionizable complex formation. The obtained salts I and II were also characterized by theoretical calculations, Fourier-transform IR spectroscopy (FT–IR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and elemental analysis.


2005 ◽  
Vol 60 (9) ◽  
pp. 978-983 ◽  
Author(s):  
Sevim Hamamci ◽  
Veysel T. Yilmaz ◽  
William T. A. Harrison

Two new saccharinato-silver(I) (sac) complexes, [Ag(sac)(ampy)] (1), and [Ag2(sac)2(μ-aepy)2] (2), [ampy = 2-(aminomethyl)pyridine, aepy = 2-(2-aminoethyl)pyridine], have been prepared and characterized by elemental analysis, IR spectroscopy, thermal analysis and single crystal X-ray diffraction. Complexes 1 and 2 crystallize in the monoclinic space group P21/c and triclinic space group P1̄, respectively. The silver(I) ions in both complexes 1 and 2 exhibit a distorted T-shaped AgN3 coordination geometry. 1 consists of individual molecules connected into chains by N-H···O hydrogen bonds. There are two crystallographically distinct dimers in the unit cell of 2 and in each dimer, the aepy ligands act as a bridge between two silver(I) centers, resulting in short argentophilic contacts [Ag1···Ag1 = 3.0199(4) Å and Ag2···Ag2 = 2.9894(4) Å ]. Symmetry equivalent dimers of 2 are connected by N-H···O hydrogen bonds into chains, which are further linked by aromatic π(py)···π(py) stacking interactions into sheets.


1990 ◽  
Vol 45 (11) ◽  
pp. 1508-1512 ◽  
Author(s):  
Michel Mégnamisi-Bélombé ◽  
Bernhard Nuber

The ammonium salts of the complex anions trans-diiodobis(ethanedial-dioximato)-cobaltate(III), [Col2(GH)2]-, and trans-diiodobis(ethanedial-dioximato)rhodate(III), [RhI2(GH)2]- (GH- = ethanedial dioximate or glyoximate), have been synthesized and their structures determined from single crystal X-ray diffraction data at room temperature. The crystals of the two salts are monoclinic, space group C2/c. NH4[CoI2(GH)2] (I) crystallizes as dark-brown prisms with a greenish reflectance; its crystal data are: C4H10Col2N5O4, Mr = 504.90; a = 8.910(6), b = 11.700(9), c = 11.691(6) Å; β = 93.55(5)°; V = 1216.4 Å3; Z = 4; Dc = 2.78 Mg m-3. NH4[RhI2(GH)2] (II) crystallizes as yellow-brown blocks with crystal data: C4H10I2N5O4Rh, Mr = 548.88; a = 9.038(4), b = 11.949(5), c = 11.770(3) Å; β = 95.54(3)°; V = 1265.16 A3; Z = 4; Dc = 2.87 Mg m-3. The two structures were refined to a final RW = 0.045 for 1209 observed independent reflections and 95 parameters for I, and to a final RW = 0.040 for 1922 observed independent reflections and 87 parameters for II. The coordination geometry around Co or Rh in the anionic complexes is a distorted (4 + 2) octahedron of four equatorial chelating N atoms and two apical iodides. The H atoms of the hydroxyl groups are involved, as usual, in intramolecular O—H—O bridges with uniform Ο···Ο separations of 2.582 Å for I, and 2.713 Å for II. The rectilinear I—Co—I or I—Rh—I triads form “infinite” zigzag chains extending parallel to the ab plane, with a weak I—I contact of 3.988 Å for I, and 4.010 Å for II.


2021 ◽  
Author(s):  
Anna A. Luginina ◽  
Sergey V. Kuznetsov ◽  
Vladimir K. Ivanov ◽  
Valery V. Voronov ◽  
Alexey D. Yapryntsev ◽  
...  

Abstract Luminescent nanocomposite films, containing SrF 2 :Но up-conversion particles, were prepared by two different protocols from aqueous dispersions of TEMPO-oxidized cellulose nanofibrils (TOCNF) functionalized with 3-aminopropyltriethoxysilane (APS) without the use of organic solvents at pH = 4.0-4.5 and 9.0-9.5, respectively. Proposed synthetic protocols included formation of the films by drying the dispersions containing pre-hydrolyzed APS adsorbed onto TOCNF and SrF 2 :Но particles followed by heating at 105 °C. Hydrophobic (water contact angle 101 ± 2°), strong, and translucent TOCNF/SrF 2 :Но-APS films were prepared by casting from a solution at pH = 4.0-4.5. Scanning electron microscopy, energy-dispersive X-ray spectroscopy with element mapping, Fourier-transform infrared spectroscopy, X-ray diffraction methods confirmed homogeneous distribution of up-conversion particles in TOCNF matrices as well as the grafting of linear polysiloxanes via the condensation of silanol groups and OH-groups on the surface of TOCNF. Differential scanning calorimetry and thermogravimetry data confirmed an increase in thermal stability of the APS modified nanocomposite films obtained at pH = 4.0-4.5. Hydrophobic TOCNF/SrF 2 :Но-APS nanocomposite films exhibited an intense red luminescence in the visible spectrum range ( 5 I 7 level excitation of Ho 3+ ions with 1912 nm laser irradiation) as well as two-times higher laser damage threshold compared to unmodified TOCNF/SrF 2 :Но films. TOCNF/SrF 2 :Но films can be used for visualization 2 μm laser radiation in medicine and long-distance atmosphere monitoring.


2011 ◽  
Vol 396-398 ◽  
pp. 1232-1235
Author(s):  
Li Hua Wang

2-Acetyl-2'-methoxylacetanilide has been synthesized by the reaction of 2-methoxylaniline and ethyl acetoacetate in toluene solution. The compound was characterized by MS, Infrared spectrum, 1HNMR and X-ray single crystal diffraction analysis. The results show that the compound is target product. The crystal data for 2-acetyl-2'-methoxylacetanilide: monoclinic, space group P2(1)/c, Mr= 207.22, De = 1.309 g/cm3, F (000) = 440, R = 0.0826 and wR = 0.1822. The complex forms layered structure through ••• stacking interaction.


Sign in / Sign up

Export Citation Format

Share Document