Solvothermal Syntheses, Crystal Structures of Two New Thioantimonates(III) of the Mn2(L)Sb2S5 Family with L = Diethylenetriamine and N-Methyl-1,3-Diaminopropane and a Study of the Magnetic Properties of Four Compounds of the Series

2004 ◽  
Vol 59 (8) ◽  
pp. 869-876 ◽  
Author(s):  
L. Engelke ◽  
R. Stähler ◽  
M. Schur ◽  
C. Näther ◽  
W. Bensch ◽  
...  

AbstractThe two new compounds Mn2(L)Sb2S5 (L = diethylenetriamine = DIEN, N-methyl-1,3- diaminopropane = MDAP) were prepared under solvothermal conditions using the elements as starting materials. Both compounds crystallise in the monoclinic space group P21/c with the lattice parameters a=10.669(7), b=12.805(2), c=12.072(1)Å , β =115.786(7)°,V =1485.1(4) Å3 for L = DIEN and a = 10.1859(7), b = 12.7806(6), c = 12.1256(8)Å , β = 110.173(8)°, V = 1481.7(2) Å3 for L = MDAP and Z = 4. The primary building units are SbS3 pyramids, MnS6 and MnS4N2 distorted octahedra. These primary building blocks are interconnected to form Mn2Sb2S4 hetero-cubane units. The hetero-cubanes share common corners, edges and faces thus forming a second heterocubane. These secondary building units are joined to form layers within the (100) plane. The connection mode yields ellipsoidal pores within the layers. The amines are exclusively bound to one of the two crystallographically independent Mn2+ cations and they point into the pores and between the layers separating the layers from each other. The interlayer separation and the size of the pores depend on the sterical requirements of the amine incorporated into the network. A pronounced distortion of the MnS4N2 octahedron results from a significant elongation of one Mn-S distance from 2.866 Å (L = methylamine, MA) to 3.185 Å for L = MDAP. The magnetic susceptibility curves are typical for low-dimensional antiferromagnetic materials and the large negative values for the Weiss constant Θ indicate strong antiferromagnetic exchange interactions. The magnetic properties are significantly influenced by the change of the Mn-S bonds introduced by the different amines. The compounds decompose at elevated temperatures with a two step reaction for L = MA and ethylenediamine and in a one step reaction for the bidentate acting amine molecules.

Author(s):  
Sergey M. Aksenov ◽  
Elena Yu. Borovikova ◽  
Vladimir S. Mironov ◽  
Natalia A. Yamnova ◽  
Anatoly S. Volkov ◽  
...  

Single crystals of Rb2CaCu6(PO4)4O2 were synthesized by a hydrothermal method in the multicomponent system CuCl2–Ca(OH)2–RbCl–B2O3–Rb3PO4. The synthesis was carried out in the temperature range from 690 to 700 K and at the general pressure of 480–500 atm [1 atm = 101.325 kPa] from the mixture in the molar ratio 2CuO:CaO:Rb2O:B2O3:P2O5. The crystals studied by single-crystal X-ray analysis were found to be monoclinic, space group C2, a = 16.8913 (4), b = 5.6406 (1), c = 8.3591 (3) Å, β = 93.919 (3)°, V = 794.57 (4) Å3. The crystal structure of Rb2CaCu6(PO4)4O2 is similar to that of shchurovskyite and dmisokolovite and is based upon a heteropolyhedral open framework formed by polar layers of copper polyhedra linked via isolated PO4 tetrahedra. The presence of well-isolated 2D heteropolyhedral layers in the title compound suggests low-dimensional magnetic behavior which is masked, however, by the fierce competition between multiple ferromagnetic and antiferromagnetic exchange interactions. At T C = 25 K, Rb2CaCu6(PO4)4O2 reaches a magnetically ordered state with large residual magnetization.


2005 ◽  
Vol 7 (8) ◽  
pp. 936-944 ◽  
Author(s):  
Laurent Cario ◽  
Alain Lafond ◽  
Tangui Morvan ◽  
Houria Kabbour ◽  
Gilles André ◽  
...  

ChemInform ◽  
2005 ◽  
Vol 36 (44) ◽  
Author(s):  
Laurent Cario ◽  
Alain Lafond ◽  
Tangui Morvan ◽  
Houria Kabbour ◽  
Gilles Andre ◽  
...  

2020 ◽  
Author(s):  
Frederik Haase ◽  
Gavin Craig ◽  
Mickaele Bonneau ◽  
kunihisa sugimoto ◽  
Shuhei Furukawa

Reticular framework materials thrive on designability, but unexpected reaction outcomes are crucial in exploring new structures and functionalities. By combining “incompatible” building blocks, we employed geometric frustration in reticular materials leading to emergent structural features. The combination of a pseudo C<sub>5</sub> symmetrical organic building unit based on a pyrrole core, with a C<sub>4</sub> symmetrical copper paddlewheel synthon led to three distinct frameworks by tuning the synthetic conditions. The frameworks show structural features typical for geometric frustration: self-limiting assembly, internally stressed equilibrium structures and topological defects in the equilibrium structure, which manifested in the formation of a hydrogen bonded framework, distorted and broken secondary building units and dangling functional groups, respectively. The influence of geometric frustration on the CO<sub>2</sub> sorption behavior and the discovery of a new secondary building unit shows geometric frustration can serve as a strategy to obtain highly complex porous frameworks.


2020 ◽  
Author(s):  
Frederik Haase ◽  
Gavin Craig ◽  
Mickaele Bonneau ◽  
kunihisa sugimoto ◽  
Shuhei Furukawa

Reticular framework materials thrive on designability, but unexpected reaction outcomes are crucial in exploring new structures and functionalities. By combining “incompatible” building blocks, we employed geometric frustration in reticular materials leading to emergent structural features. The combination of a pseudo C<sub>5</sub> symmetrical organic building unit based on a pyrrole core, with a C<sub>4</sub> symmetrical copper paddlewheel synthon led to three distinct frameworks by tuning the synthetic conditions. The frameworks show structural features typical for geometric frustration: self-limiting assembly, internally stressed equilibrium structures and topological defects in the equilibrium structure, which manifested in the formation of a hydrogen bonded framework, distorted and broken secondary building units and dangling functional groups, respectively. The influence of geometric frustration on the CO<sub>2</sub> sorption behavior and the discovery of a new secondary building unit shows geometric frustration can serve as a strategy to obtain highly complex porous frameworks.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Neelima Agarwal ◽  
Lorenzo Magnea ◽  
Sourav Pal ◽  
Anurag Tripathi

Abstract Correlators of Wilson-line operators in non-abelian gauge theories are known to exponentiate, and their logarithms can be organised in terms of collections of Feynman diagrams called webs. In [1] we introduced the concept of Cweb, or correlator web, which is a set of skeleton diagrams built with connected gluon correlators, and we computed the mixing matrices for all Cwebs connecting four or five Wilson lines at four loops. Here we complete the evaluation of four-loop mixing matrices, presenting the results for all Cwebs connecting two and three Wilson lines. We observe that the conjuctured column sum rule is obeyed by all the mixing matrices that appear at four-loops. We also show how low-dimensional mixing matrices can be uniquely determined from their known combinatorial properties, and provide some all-order results for selected classes of mixing matrices. Our results complete the required colour building blocks for the calculation of the soft anomalous dimension matrix at four-loop order.


Sign in / Sign up

Export Citation Format

Share Document