Ferromagnetic Ordering in the Thallide EuPdTl2

2006 ◽  
Vol 61 (2) ◽  
pp. 159-163 ◽  
Author(s):  
Rainer Kraft ◽  
Sudhindra Rayaprol ◽  
C. Peter Sebastian ◽  
Rainer Pöttgen

AbstractThe new thallide EuPdTl2, synthesized from the elements in a sealed tantalum tube in a highfrequency furnace, was investigated by X-ray diffraction on powders and single crystals: MgCuAl2 type, Cmcm, Z = 4, a = 446.6(1), b = 1076.7(2), c = 812.0(2) pm, wR2 = 0.0632, 336 F2 values, 16 variables. The structure can be considered as an orthorhombically distorted, palladium-filled variant of the binary Zintl phase EuTl2. The palladium and thallium atoms build up a three-dimensional [PdTl2] polyanion with significant Pd-Tl (286 - 287 pm) and Tl-Tl (323 - 329 pm) interactions. The europium atoms fill distorted hexagonal channels of the [PdTl2] polyanion. Susceptibility measurements show a magnetic moment of 7.46(5) μB/Eu atom, indicative of divalent europium. EuPdTl2 is a soft ferromagnet with a Curie temperature of TC = 12.5(5) K.

2016 ◽  
Vol 49 (6) ◽  
pp. 2053-2062 ◽  
Author(s):  
Harsh Yadav ◽  
Nidhi Sinha ◽  
Sahil Goel ◽  
Abid Hussain ◽  
Binay Kumar

Large single crystals of the promising molecular organic ferroelectric diisopropylammonium bromide (DIPAB) have been grown by the solution technique. A structural study was performed using single-crystal X-ray diffraction analysis. The twin element of a selected DIPAB crystal was identified by a morphological study. Intermolecular interactions present in the grown crystal were explored by Hirshfeld surface (three-dimensional) and fingerprint plot (two-dimensional) studies. In UV–vis spectroscopy, the DIPAB crystal has shown high transparency with a wide direct band gap of 5.65 eV. In the photoluminescence spectrum, sharp UV and blue emissions were observed at 370, 392, 417 and 432 nm. The electrical properties were investigated by measuring the dielectric constant (∊) and loss (tanδ) of the grown crystal. The DIPAB crystal exhibits a promising piezoelectric charge coefficient (d33) value of 18 pC N−1, which makes it suitable for transducer applications. A high ferroelectric Curie temperature (Tc≃ 425 K) with high remnant polarization (20.52 µC cm−2) and high coercive field (12.25 kV cm−1) were observed in the as-grown crystal. Vickers microhardness analysis shows that the value of Meyer's index (n= 7.27) belongs to the soft material range, which was also confirmed by void analysis along three crystallographic axes. It is shown that the DIPAB crystal has potential for optical, ferroelectric and piezoelectric applications.


2001 ◽  
Vol 56 (7) ◽  
pp. 598-603 ◽  
Author(s):  
◽  
Gunter Kotzyba ◽  
Rolf-Dieter Hoffmann ◽  
Rainer Pöttgen

Abstract New intermetallic compounds EuAgCd and YbAgCd were synthesized in quantitative yield by reaction of the elements in sealed tantalum tubes in a high-frequency furnace. Both com­ pounds were investigated by X-ray diffraction on powders and single crystals: KHg2 type, Imma, a = 490.41(8), b = 771.0(1), c = 834.4(2) pm, wR2 = 0.0624, 255 F2 values, 12 variables for EuAgCd, and MgZn2 type, Pb3/mmc, a = 584.66(5), c = 946.83(9) pm, wR2 = 0.0502, 187 F2 values, 11 variables for YbAgCd. Owing to the very small difference in scattering power, no long range ordering of the silver and cadmium atoms is evident from the X-ray data, although Ag-Cd ordering is expected. The silver and cadmium atoms randomly occupy the mercury and zinc positions of the KHg2 and MgZn2 type structures, respectively. In EuAgCd the [AgCd] substructure consists of strongly puckered, orthorhombically distorted Ag3 Cd3 hexagons, while a three-dimensional network of face-and comer-sharing tetrahedra is observed in YbAgCd. The rare earth atoms fill the space between the Ag3 Cd3 hexagons (EuAgCd) or within the three-dimensional tetrahedral network (YbAgCd). Magnetic susceptibility measurements in­ dicate Pauli paramagnetism for YbAgCd and Curie-Weiss behavior above 60 K for EuAgCd with an experimental magnetic moment of 7.82(3) μB/Eu indicating divalent ytterbium and europium. Ferromagnetic ordering at Tc = 28.0(5) K is observed for EuAgCd. At 2 K and 5 T the saturation magnetization is 5.85(5) μB/Eu.


1996 ◽  
Vol 51 (6) ◽  
pp. 806-810 ◽  
Author(s):  
Rainer Pöttgen

Abstract EuPdSn and EuPtSn were prepared from the elements in tantalum tubes at 1070 K and investigated by X-ray diffraction on both powder as well as single crystals. They crystallize with the TiNiSi type structure of space group Pnma and with Z = 4 formula units per cell. Both structures were refined from single-crystal diffractometer data: a = 751.24(9), b = 469.15(6), c = 804.31(9) pm, V = 0.2835(1) nm3 for EuPdSn, and a = 753.38(7), b = 467.72(4), c = 793.08(7) pm, V = 0.2795(1) nnr for EuPtSn. The structures consist of three-dimensional [PdSn] and [PtSn] polyanionic networks in which the europium atoms are embedded. The crystal chemistry of these stannides is briefly discussed


2020 ◽  
Vol 76 (8) ◽  
pp. 1369-1372
Author(s):  
Abdessalem Badri ◽  
Inmaculada Alvarez-Serrano ◽  
María Luisa López ◽  
Mongi Ben Amara

Na2.22Mn0.87In1.68(PO4)3, sodium manganese indium tris(phosphate) (2.22/0.87/1.68), was obtained in the form of single crystals by a flux method and was structurally characterized by single-crystal X-ray diffraction. The compound belongs to the alluaudite structure type (space group C2/c) with general formula X(2)X(1)M(1)M(2)2(PO4)3. The X(2) and X(1) sites are partially occupied by sodium [occupancy 0.7676 (17) and 1/2] while the M(1) and M(2) sites are fully occupied within a mixed distribution of sodium/manganese(II) and manganese(II)/indium, respectively. The three-dimensional anionic framework is built up on the basis of M(2)2O10 dimers that share opposite edges with M(1)O6 octahedra, thus forming infinite chains extending parallel to [10\overline{1}]. The linkage between these chains is ensured by PO4 tetrahedra through common vertices. The three-dimensional network thus constructed delimits two types of hexagonal channels, resulting from the catenation of M(2)2O10 dimers, M(1)O6 octahedra and PO4 tetrahedra through edge- and corner-sharing. The channels are occupied by Na+ cations with coordination numbers of seven and eight.


2002 ◽  
Vol 57 (7) ◽  
pp. 798-802 ◽  
Author(s):  
Vasyl’ I Zaremba ◽  
Vitaliy P Dubenskiy ◽  
Rainer Pöttgena

The ternary indides LnRhIn2 (Ln = La, Ce, Pr, Nd, Sm) were synthesized by arc-melting of the elements under an argon atmosphere and subsequent annealing at 870 K. The samples have been investigated by X-ray diffraction on powders and single crystals: MgCuAl2 type, Cmcm, a = 448.2(1), b = 1025.7(1), c = 795.1(1) pm, wR2 = 0.0372, 228 F2 values, 16 variables for LaRhIn2, a = 446.0(1), b = 1017.3(2), c = 792.7(1) pm for CeRhIn2, a = 444.03(6), b = 1013.1(1), c = 792.5(1) pm for PrRhIn2, a = 442.49(5), b = 1012.7(1), c = 789.3(1) pm for NdRhIn2, and a = 438.1(1), b = 1009.3(1), c = 788.3(1) pm, wR2= 0.0414, 304 F2 values, 16 variables for SmRhIn2. Geometrical motifs of these structures are tricapped trigonal prisms around the rhodium atoms. The shortest interatomic distances were observed for the Rh-In contacts: 280-282 pm for LaRhIn2 and 276-279 pm for SmRhIn2. Together, the rhodium and indium atoms build a three-dimensional [RhIn2] polyanion in which the lanthanoid atoms fill distorted pentagonal channels. According to one short La-Rh (282 pm) and Sm-Rh (284 pm) distance one can assume strong bonding of the lanthanoid atoms to the polyanion.


Science ◽  
2018 ◽  
Vol 361 (6397) ◽  
pp. 48-52 ◽  
Author(s):  
Tianqiong Ma ◽  
Eugene A. Kapustin ◽  
Shawn X. Yin ◽  
Lin Liang ◽  
Zhengyang Zhou ◽  
...  

The crystallization problem is an outstanding challenge in the chemistry of porous covalent organic frameworks (COFs). Their structural characterization has been limited to modeling and solutions based on powder x-ray or electron diffraction data. Single crystals of COFs amenable to x-ray diffraction characterization have not been reported. Here, we developed a general procedure to grow large single crystals of three-dimensional imine-based COFs (COF-300, hydrated form of COF-300, COF-303, LZU-79, and LZU-111). The high quality of the crystals allowed collection of single-crystal x-ray diffraction data of up to 0.83-angstrom resolution, leading to unambiguous solution and precise anisotropic refinement. Characteristics such as degree of interpenetration, arrangement of water guests, the reversed imine connectivity, linker disorder, and uncommon topology were deciphered with atomic precision—aspects impossible to determine without single crystals.


2018 ◽  
Vol 284 ◽  
pp. 194-197
Author(s):  
D.A. Vinnik ◽  
Vladimir E. Zhivulin ◽  
S.A. Gudkova

Single crystals of lead germanate are obtained by the Czochralski technique. The dimensions of hexagonally shaped crystals are up to 25 × 25 × 5 mm3. According to X-ray diffraction measurements the grown crystals respond to lead germanate Pb5Ge3O11 structure. Curie temperature was also measured.


1990 ◽  
Vol 213 ◽  
Author(s):  
A.R Yavari ◽  
M.D. Baro ◽  
G. Fillion ◽  
S. Surinach ◽  
S. Gialanella ◽  
...  

ABSTRACT:Ordering of the disordered state (obtained by cold-working or by meltspinning) of L12 type Ni,AI,Fe alloys has been monitored by calorimetric, magnetic and X-ray diffraction measurements .It is found that the magnetic moment per atom of the Ni,Al,Fe alloys in the γ-disordered state is about half of that of the LI2 -γ'state. Magnetic measurements such as ours constitute a new tool for studyingthe γ→γ' transition below the Curie temperature.


Sign in / Sign up

Export Citation Format

Share Document