Determination of the Molecular Weight and the Hydrodynamic Properties of a Polypeptide from the Thylakoid Membrane by Sedimentation, Diffusion and Binding Measurements in Dodecyl Sulphate Solutions

1975 ◽  
Vol 30 (9-10) ◽  
pp. 615-621 ◽  
Author(s):  
Hans Craubner ◽  
Friederike Koenig ◽  
Georg H. Schmid

The molecular weight and hydrodynamic properties of a polypeptide isolated from the lamellar system of Antirrhinum chloroplasts were determined in sodium dodecyl sulphate solution by measurement of sedimentation velocity, diffusion and effective partial specific volume. The polypeptide fraction exhibits a molecular weight of 25 000 which agrees with the apparent molecular weight found by polyacrylamide gel electrophoresis. The molecular weight of the polypeptidesodium dodecyl sulphate micelle was 54 000, with a friction ratio of 1.6 which indicates an effective asymmetric hydrodynamic shape. For binding measurements self-diffusion equilibrium dialysis with dodecyl [35S] sulphate was used. In this case, dialysis equilibrium was reached within about 10 hours, in contrast to the dialysis with initial concentration differences which requires much longer times. A binding value of δD = 1.15g sodium dodecyl sulphate per g polypeptide was obtained which corresponds to a molar binding ratio of 100 mol dodecyl sulphate bound per mol of polypeptide. After the removal of dodecyl sulphate the polypeptide is present in an aggregated state. In phosphate buffers of pH 6.8 and 7.5 the aggregates preponderantly have sedimentation coefficients of 11.7 and 6.8 Svedberg units respectively. Assuming equivalent spheres the molecular weights were calculated to be 340 000 and 150 000.

1977 ◽  
Vol 32 (5-6) ◽  
pp. 384-391 ◽  
Author(s):  
Hans Craubner ◽  
Friederike Koenig

Abstract The molecular weight of a thylakoid membrane polypeptide with the apparent molecular weight 11 000 was determined by measurement of the sedimentation velocity, the diffusion and the ef­fective partial specific volume. The molecular weight was found to be 6300 and that of the poly-peptide-dodecyl sulphate micelle was found to be 11 200. The frictional ratio was 1.35. In ad­dition, we determined the binding of dodecyl sulphate onto the polypeptide by equilibrium dialysis. We found that 1 g polypeptide binds 0.77 g sodium dodecyl sulphate which corresponds to 17 molecules dodecyl sulphate bound per polypeptide chain. In the absence of dodecyl sulphate the polypeptide aggregates. The molecular weights of the aggregates are in 0.01 м sodium phosphate buffer pH 7.2 150 000 and in a 1 :1 mixture of 0.01 м phosphate buffer and 96% ethanol 365 000. The frictional ratios were 1.07 and 1.16 respectively which points at a spherical shape. The experimental conditions for the determination of the dodecyl sulphate binding were critically scrutinised.


1977 ◽  
Vol 167 (2) ◽  
pp. 509-512 ◽  
Author(s):  
C W Bamforth ◽  
P J Large

N-Methylglutamate dehydrogenase, purified to a specific activity of 0.29 unit/mg of protein, gave one band on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, corresponding to a molecular weight of 130 000. Enzyme-Triton complexes were found to have a partial specific volume of 0.73 cm3/g, suggesting that the protein binds less than 0.1 g of Triton/g of protein. A molecular weight for the intact enzyme in the presence of 1% (w/v) Triton X-100 of 550 000 suggested that the enzyme may be a tetramer.


1981 ◽  
Vol 193 (3) ◽  
pp. 947-951 ◽  
Author(s):  
I A Braude ◽  
L S Lin ◽  
W E Stewart

Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis was used to characterize human leucocyte interferon (HuIFN-alpha) under reducing and non-reducing conditions. Under non-reducing conditions HuIFN-alpha possesses two size forms, but under reducing conditions (r-HuIFN-alpha) only one is observed. The apparent molecular weight of this one form varies with the concentration of 2-mercaptoethanol used. When r-HuIFN-alpha is permitted to reoxidize the bimodal configuration of HuIFN-alpha is restored. The size heterogeneity of native HuIFN-alpha can be eliminated by mild treatment with NaIO4 [HuIFN-alpha/IO4; Stewart II, Lin, Wiranowska-Stewart & Cantell (1977) Proc. Natl. Acad. Sci. U.S.A. 74, 4200-4204]. The size of the HuIFN-alpha/IO4 increases after treatment with 2-mercaptoethanol (r-HuIFN-alpha/IO4) and the apparent molecular weight of this component also varies with the concentration of 2-mercaptoethanol used. In the case of r-HuIFN-alpha the single peak observed apparently originates from both the higher- and lower-molecular-weight components.


1976 ◽  
Vol 156 (1) ◽  
pp. 143-150 ◽  
Author(s):  
R H Quarles

Rats (14 days old) were injected with [14c]fucose and young adult rats with [3H]fucose in order to label the myelin-associated glycoproteins. As previously reported, the major [14C]fucose-labelled glycoprotein in the immature myelin had a higher apparent molecular weight on sodium dodecyl sulphate/polyacrylamide gels that the [3H]fucose-labelled glycoprotein in mature myelin. This predominant doubly labelled glycoprotein component was partially purified by preparative gel electrophoresis and converted to glycopeptides by extensive Pronase digestion. Gel filtration on Sephadex G-50 separated the glycopeptides into several clases, which were designted A,B, C AND D, from high to low molecular weight. The 14C-labelled glycopeptides from immature myeline were enriched in the highest-molecular-weight class A relative to the 3H-labelled glycopeptides from mature myelin. Neuraminidase treatment of the glycoprotein before Pronase digestion greatly decreased the proportion of glycopeptides fractionating in the higher-molecular-weight classes and largely eliminated the developmental differences that were apparent by gel filtration. However, neuraminidase treatment did not decrease the magnitude of the developmental difference revealed by electrophoresing the intact glycoprotein on sodium dodecyl sulphate gels, although it did decrease the apparent molecular weight of the glycoprotein from both the 15-day-old and adult rats by an amount comparable in magnitude to that developmental difference. The results from gel filtration of glycopeptides indicate that there is a higher content of large molecular weight, sialic acid-rich oligosaccharide units in the glycoprotein of immature myelin. However, the higher apparent molecular weight for the glycoprotein from 15-day-old rats on sodium dodcyl sulphate gels is not due primarily to its higher sialic acid content.


1983 ◽  
Vol 59 (1) ◽  
pp. 81-103 ◽  
Author(s):  
R. Crossley ◽  
D.V. Holberton

Proteins from the axonemes and disc cytoskeleton of Giardia lamblia have been examined by sodium dodecyl sulphate/polyacrylamide gel electrophoresis. In addition to tubulin and the 30 X 10(3) molecular weight disc protein, at least 18 minor components copurify with the two major proteins in Triton-insoluble structures. The most prominent minor bands have the apparent molecular weights of 110 X 10(3), 95 X 10(3) and 81 X 10(3). Protein of 30 X 10(3) molecular weight accounts for about 20% of organelle protein on gels. In continuous 25 mM-Tris-glycine buffer it migrates mostly as a close-spaced doublet of polypeptides, which are here given the name giardins. Giardia tubulin and giardin have been purified by gel filtration chromatography in the presence of sodium dodecyl sulphate. Well-separated fractions were obtained that could be further characterized. Both proteins are heterogeneous when examined by isoelectric focusing. Five tubulin chains were detected by PAGE Blue 83 dye-binding after focusing in a broad-range ampholyte gel. Giardin is slightly less acidic than tubulin. On gels it splits into four major and four minor chains with isoelectric points in the pI range from 5.8 to 6.2. The amino acid composition of the giardin fraction has been determined, and compared to Giardia tubulin and a rat brain tubulin standard. Giardins are rich in helix-forming residues, particularly leucine. They have a low content of proline and glycine; therefore they may have extensive alpha-helical regions and be rod-shaped. As integral proteins of disc microribbons, giardins in vivo associate closely with tubulin. The properties of giardins indicate that in a number of respects - molecular size, charge, stoichiometry - their structural interaction with tubulin assemblies will be different from other tubulin-accessory protein copolymers studied in vitro.


1989 ◽  
Vol 40 (3) ◽  
pp. 675 ◽  
Author(s):  
DJ Tucker ◽  
AHF Hudson ◽  
A Laudani ◽  
RC Marshall ◽  
DE Rivett

The proteins from a range of cashmere, mohair, angoratcashmere crossbred and wool fibre samples were extracted at pH 8 with 8 M urea containing dithiothreitol, and were then radiolabelled by S-carboxymethylation using iodo(2-14C) acetate. The proteins from each sample were examined by two dimensional polyacrylamide gel electrophoresis in which the separation in the first dimension was according to charge at pH 8.9 and in the second dimension according to apparent molecular weight in the presence of sodium dodecyl sulfate. After electrophoresis the proteins were detected by fluorography. Protein differences in keratin samples from some individual goats existed, although the overall protein patterns were similar. None of the differences were consistent with any one goat fibre type. The protein patterns obtained for fibre samples from individual cashmere goats showed some differences when compared to those found for commercial blends from the same country of origin, indicating that blending can mask any animal-to-animal variation. While the electrophoretic technique does not unequivocally distinguish between cashmere, mohair and angora/cashmere crossbred fibres it does differentiate between wool and goat fibres.


1981 ◽  
Vol 197 (2) ◽  
pp. 519-522 ◽  
Author(s):  
E G Afting ◽  
M L Recker

Cathepsin D was purified by two-step affinity chromatography on concanavalin A- and pepstatin-Sepharose. The main purification was achieved by washing the enzyme bound to the pepstatin-Sepharose column with buffered 6 M-urea. This step separated cathepsin D from all low- and high-molecular-weight impurities. Although the 1700-fold purified acid proteinase was homogeneous on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, it still showed microheterogeneity.


1976 ◽  
Vol 159 (1) ◽  
pp. 181-184 ◽  
Author(s):  
N Paskin ◽  
R J Mayer

Fatty acid synthetase purified from the mammary gland of the rabbit has a mol. wt. of 968000 as determined by gel filtration. The enzyme gave one band, corresponding to a mol.wt. of approx. 35000, on polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate and phenylmethanesulphonyl fluoride.


1981 ◽  
Vol 197 (2) ◽  
pp. 355-366 ◽  
Author(s):  
D Heinegård ◽  
M Paulsson ◽  
S Inerot ◽  
C Carlström

Proteoglycans were isolated from cartilage by extraction with 4M-guanidinium chloride followed by direct centrifugation in 4M-guanidinium chloride/CsCl at a low starting density, 1.34 g/ml. N-Ethylmaleimide was included in the extraction solvent as a precaution against contamination of proteoglycans with unrelated proteins mediated by disulphide exchange. A novel, discrete, low-buoyant-density proteoglycan (1.40-1.35 g/ml) was demonstrated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Its proteoglycan nature was revealed by the shift in the molecular size observed on gel electrophoresis after treatment with chondroitinase ABC. The core protein was monodisperse. The proteoglycan was further purified by gel chromatography with and without addition of hyaluronate. The proteoglycan constitutes less than 2% (by weight) of the total extracted proteoglycans and is not capable of interacting with hyaluronate. The same proteoglycan was purified in larger quantities by sequential associative and dissociative CsCl-density-gradient centrifugation, zonal rate sedimentation in a sucrose gradient and gel chromatography on Sepharose CL-4B. The pure proteoglycan had a molecular weight of 76 300 determined by sedimentation-equilibrium centrifugation and an apparent partial specific volume of 0.59 ml/g. It contained about 25% protein (of dry weight) and had remarkably high contents of leucine and cysteine as compared with other proteoglycans. The proteoglycan contained two to three large chondroitin sulphate chains and some oligosaccharides.


Sign in / Sign up

Export Citation Format

Share Document