18O-Exchange by Hydrolyzing Enzymes: Extension of the Model to Pi Molecules with Inequivalent Oxygen Atoms in the Bound State

1981 ◽  
Vol 36 (7-8) ◽  
pp. 539-544 ◽  
Author(s):  
Paul Rösch

Abstract Enzymes causing an exchange of oxygens from P\ with the surrounding water oxygens are very common. A statistical model for the data evaluation for an observation of this oxygen exchange by isotope methods is presented. It is shown how different cases of inequivalence of the four Pi oxygens may be uncovered. The number of reversals of the oxygen exchange step on the enzyme and the apparent second order rate constant for the binding of Pi to the enzyme are obtained as a result of the data fitting procedure. Cobalt phosphatase, zinc phosphatase, and myosin subfragment 1 are treated as examples.

1988 ◽  
Vol 256 (1) ◽  
pp. 41-46 ◽  
Author(s):  
M A Geeves ◽  
T E Jeffries

The binding of actin to myosin subfragment 1 (S1) has been shown to occur as a two-step reaction [Coates, Criddle & Geeves (1985) Biochem. J. 232, 351-356]. In the first step actin is weakly bound and the second step involves the complex isomerizing to a more tightly bound state. This isomerization can be followed specifically by monitoring the fluorescence of actin that has been covalently labelled with N-(pyren-1-yl)-iodoacetamide at Cys-374 [Geeves, Jeffries & Millar (1986) Biochemistry 25, 8454-8458]. We report here that the presence of nucleotides and nucleotide analogues affects the equilibrium between the strongly bound and weakly bound states (referred to as K2). In the presence of ATP, [gamma-thio]ATP or ADP and vanadate a value of approx. less than 10(-2) was estimated for K2. In the presence of PPi or ADP a value of approx. 2.3 or 10 respectively was obtained. An increase in KCl concentration or the presence of 40% ethylene glycol was found to decrease K2 in the presence of ADP. The data presented here are consistent with the two-step binding model proposed by Geeves, Goody & Gutfreund [(1984) J. Muscle Res. Cell Motil. 5, 351-361], where it was suggested that the transition between weakly bound and strongly bound states is closely associated with the force-generating event in whole muscle.


Author(s):  
Donald A. Winkelmann

The primary role of the interaction of actin and myosin is the generation of force and motion as a direct consequence of the cyclic interaction of myosin crossbridges with actin filaments. Myosin is composed of six polypeptides: two heavy chains of molecular weight 220,000 daltons and two pairs of light chains of molecular weight 17,000-23,000. The C-terminal portions of the myosin heavy chains associate to form an α-helical coiled-coil rod which is responsible for myosin filament formation. The N-terminal portion of each heavy chain associates with two different light chains to form a globular head that binds actin and hydrolyses ATP. Myosin can be fragmented by limited proteolysis into several structural and functional domains. It has recently been demonstrated using an in vitro movement assay that the globular head domain, subfragment-1, is sufficient to cause sliding movement of actin filaments.The discovery of conditions for crystallization of the myosin subfragment-1 (S1) has led to a systematic analysis of S1 structure by x-ray crystallography and electron microscopy. Image analysis of electron micrographs of thin sections of small S1 crystals has been used to determine the structure of S1 in the crystal lattice.


Author(s):  
John Trinickt ◽  
Howard White

The primary force of muscle contraction is thought to involve a change in the myosin head whilst attached to actin, the energy coming from ATP hydrolysis. This change in attached state could either be a conformational change in the head or an alteration in the binding angle made with actin. A considerable amount is known about one bound state, the so-called strongly attached state, which occurs in the presence of ADP or in the absence of nucleotide. In this state, which probably corresponds to the last attached state of the force-producing cycle, the angle between the long axis myosin head and the actin filament is roughly 45°. Details of other attached states before and during power production have been difficult to obtain because, even at very high protein concentration, the complex is almost completely dissociated by ATP. Electron micrographs of the complex in the presence of ATP have therefore been obtained only after chemically cross-linking myosin subfragment-1 (S1) to actin filaments to prevent dissociation. But it is unclear then whether the variability in attachment angle observed is due merely to the cross-link acting as a hinge.We have recently found low ionic-strength conditions under which, without resorting to cross-linking, a high fraction of S1 is bound to actin during steady state ATP hydrolysis. The structure of this complex is being studied by cryo-electron microscopy of hydrated specimens. Most advantages of frozen specimens over ambient temperature methods such as negative staining have already been documented. These include improved preservation and fixation rates and the ability to observe protein directly rather than a surrounding stain envelope. In the present experiments, hydrated specimens have the additional benefit that it is feasible to use protein concentrations roughly two orders of magnitude higher than in conventional specimens, thereby reducing dissociation of weakly bound complexes.


1989 ◽  
Vol 264 (18) ◽  
pp. 10810-10819
Author(s):  
K N Rajasekharan ◽  
M Mayadevi ◽  
M Burke

Modelling ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 78-104
Author(s):  
Vasili B. V. Nagarjuna ◽  
R. Vishnu Vardhan ◽  
Christophe Chesneau

Every day, new data must be analysed as well as possible in all areas of applied science, which requires the development of attractive statistical models, that is to say adapted to the context, easy to use and efficient. In this article, we innovate in this direction by proposing a new statistical model based on the functionalities of the sinusoidal transformation and power Lomax distribution. We thus introduce a new three-parameter survival distribution called sine power Lomax distribution. In a first approach, we present it theoretically and provide some of its significant properties. Then the practicality, utility and flexibility of the sine power Lomax model are demonstrated through a comprehensive simulation study, and the analysis of nine real datasets mainly from medicine and engineering. Based on relevant goodness of fit criteria, it is shown that the sine power Lomax model has a better fit to some of the existing Lomax-like distributions.


Sign in / Sign up

Export Citation Format

Share Document