Site-Directed Mutagenesis of Proline-285 to Leucine in Cephalosporium acremonium Isopenicillin N - Synthase Affects Catalysis and Increases Soluble Expression at Higher Temperatures

2001 ◽  
Vol 56 (5-6) ◽  
pp. 413-415 ◽  
Author(s):  
Paxton Loke ◽  
Tiow-Suan Sim

The conversion of δ-(ʟ-α-aminoadipyl)-ʟ-cysteinyl-ᴅ-valine (ACV) to isopenicillin N is dependant on the catalytic action of isopenicillin N - synthase (IPNS), an important enzyme in the penicillin and cephalosporin biosynthetic pathway. One of the amino acid residues suggested by the Aspergillus nidulans IPNS crystal structure for interaction with the valine isopropyl group of ACV is proline-283. Site-directed mutagenesis of the corresponding proline- 285 to leucine in Cephalosporium acremonium IPNS resulted in non-measurable activity but an increased soluble expression at higher temperatures in a heterologous E. coli host.

2001 ◽  
Vol 47 (10) ◽  
pp. 961-964 ◽  
Author(s):  
Paxton Loke ◽  
Tiow-Suan Sim

Isopenicillin N synthase (IPNS) is critical for the catalytic conversion of δ -(L-α-aminoadipoyl)-L-cysteinyl-D-valine to isopenicillin N in the penicillin and cephalosporin biosynthetic pathway. Two conserved glycine residues in Cephalosporium acremonium IPNS (cIPNS), namely glycine-42 and glycine-256, were identified by multiple sequence alignment and investigated by site-directed mutagenesis to study the effect of the substitution on catalysis. Our study showed that both the mutations from glycine to alanine or to serine reduced the catalytic activity of cIPNS and affected its soluble expression in a heterologous host at 37°C. Soluble expression was restored at a reduced temperature of 25°C, and thus, it is possible that these glycine residues may have a role in maintaining the local protein structure and are critical for the soluble expression of cIPNS.Key words: isopenicillin N synthase, site-directed mutagenesis, glycine, Cephalosporium acremonium.


1994 ◽  
Vol 180 (6) ◽  
pp. 2147-2153 ◽  
Author(s):  
M Pizza ◽  
M R Fontana ◽  
M M Giuliani ◽  
M Domenighini ◽  
C Magagnoli ◽  
...  

Escherichia coli enterotoxin (LT) and the homologous cholera toxin (CT) are A-B toxins that cause travelers' diarrhea and cholera, respectively. So far, experimental live and killed vaccines against these diseases have been developed using only the nontoxic B portion of these toxins. The enzymatically active A subunit has not been used because it is responsible for the toxicity and it is reported to induce a negligible titer of toxin neutralizing antibodies. We used site-directed mutagenesis to inactivate the ADP-ribosyltransferase activity of the A subunit and obtained nontoxic derivatives of LT that elicited a good titer of neutralizing antibodies recognizing the A subunit. These LT mutants and equivalent mutants of CT may be used to improve live and killed vaccines against cholera and enterotoxinogenic E. coli.


1997 ◽  
Vol 75 (6) ◽  
pp. 687-696 ◽  
Author(s):  
Tamo Fukamizo ◽  
Ryszard Brzezinski

Novel information on the structure and function of chitosanase, which hydrolyzes the beta -1,4-glycosidic linkage of chitosan, has accumulated in recent years. The cloning of the chitosanase gene from Streptomyces sp. strain N174 and the establishment of an efficient expression system using Streptomyces lividans TK24 have contributed to these advances. Amino acid sequence comparisons of the chitosanases that have been sequenced to date revealed a significant homology in the N-terminal module. From energy minimization based on the X-ray crystal structure of Streptomyces sp. strain N174 chitosanase, the substrate binding cleft of this enzyme was estimated to be composed of six monosaccharide binding subsites. The hydrolytic reaction takes place at the center of the binding cleft with an inverting mechanism. Site-directed mutagenesis of the carboxylic amino acid residues that are conserved revealed that Glu-22 and Asp-40 are the catalytic residues. The tryptophan residues in the chitosanase do not participate directly in the substrate binding but stabilize the protein structure by interacting with hydrophobic and carboxylic side chains of the other amino acid residues. Structural and functional similarities were found between chitosanase, barley chitinase, bacteriophage T4 lysozyme, and goose egg white lysozyme, even though these proteins share no sequence similarities. This information can be helpful for the design of new chitinolytic enzymes that can be applied to carbohydrate engineering, biological control of phytopathogens, and other fields including chitinous polysaccharide degradation. Key words: chitosanase, amino acid sequence, overexpression system, reaction mechanism, site-directed mutagenesis.


Biochemistry ◽  
2014 ◽  
Vol 53 (44) ◽  
pp. 6924-6933 ◽  
Author(s):  
Nicola Giangregorio ◽  
Lara Console ◽  
Annamaria Tonazzi ◽  
Ferdinando Palmieri ◽  
Cesare Indiveri

FEBS Letters ◽  
1988 ◽  
Vol 232 (1) ◽  
pp. 111-114 ◽  
Author(s):  
Derek Parsonage ◽  
Susan Wilke-Mounts ◽  
Alan E. Senior

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6806
Author(s):  
Bruna F. Mazzeu ◽  
Tatiana M. Souza-Moreira ◽  
Andrew A. Oliveira ◽  
Melissa Remlinger ◽  
Lidiane G. Felippe ◽  
...  

Friedelin, a pentacyclic triterpene found in the leaves of the Celastraceae species, demonstrates numerous biological activities and is a precursor of quinonemethide triterpenes, which are promising antitumoral agents. Friedelin is biosynthesized from the cyclization of 2,3-oxidosqualene, involving a series of rearrangements to form a ketone by deprotonation of the hydroxylated intermediate, without the aid of an oxidoreductase enzyme. Mutagenesis studies among oxidosqualene cyclases (OSCs) have demonstrated the influence of amino acid residues on rearrangements during substrate cyclization: loss of catalytic activity, stabilization, rearrangement control or specificity changing. In the present study, friedelin synthase from Maytenus ilicifolia (Celastraceae) was expressed heterologously in Saccharomyces cerevisiae. Site-directed mutagenesis studies were performed by replacing phenylalanine with tryptophan at position 473 (Phe473Trp), methionine with serine at position 549 (Met549Ser) and leucine with phenylalanine at position 552 (Leu552Phe). Mutation Phe473Trp led to a total loss of function; mutants Met549Ser and Leu552Phe interfered with the enzyme specificity leading to enhanced friedelin production, in addition to α-amyrin and β-amyrin. Hence, these data showed that methionine 549 and leucine 552 are important residues for the function of this synthase.


2021 ◽  
Author(s):  
◽  
Madeleine Huber

Operons wurden zuerst im Jahre 1961 beschrieben. Bis heute ist bekannt, dass die prokaryotischen Domänen Bacteria und Archaea Gene sowohl in monocistronischen als auch in bi- oder polycistronischen Transkripten exprimieren können. Häufig überlappen Gene sogar in ihren Sequenzen. Diese überlappenden Genpaare stehen nicht in Korrelation mit der Kompaktheit ihres Genoms. Das führt zu der Annahme, dass eine Art der Regulation vorliegt, welche weitere Proteine oder Gene nicht benötigt. Diese könnte eine gekoppelte Translation sein. Das bedeutet die Translation des stromabwärts-liegenden Gens ist abhängig von der Translation eines stromaufwärts-liegenden Gens. Diese Abhängigkeit kann zum Beispiel durch lang reichende Sekundärstrukturen entstehen, bei welchen Ribosomenbindestellen (RBS) des stromabwärts-liegenden Gens blockiert sind. Die de novo-Initiation am stromabwärts-liegenden Gen kann nur stattfinden, wenn das erste Gen translatiert wird und dabei die Sekundärstruktur an der RBS aufgeschmolzen wird. Für Genpaare in E. coli ist dieser Mechanismus gut untersucht. Ein anderes Beispiel für die Translationskopplung ist die Termination-Reinitiation, bei welcher ein Ribosom das erste Gen translatiert bis zum Stop-Codon, dort terminiert und direkt am stromabwärts-liegenden Start-Codon reinitiiert. Der Mechanismus via Termination-Reinitiation ist bis jetzt nur für eukaryontische Viren beschrieben worden. Im Gegensatz zu einer Kopplung über Sekundärstrukturen kommt es bei der Termination-Reinitiation am stromabwärts-liegenden Gen nicht zu einer de novo-Initiation sondern eine Reinitiation des Ribosoms findet statt. Diese Arbeit analysiert jene Art der Translationskopplung an Genen polycistronischer mRNAs in jeweils einem Modellorganismus als Vertreter der Archaea (Haloferax volcanii) und Bacteria (Escherichia coli). Hierfür wurden Reportergenvektoren erstellt, welche die überlappenden Genpaare an Reportergene fusionierten. Für diese Reportergene ist es möglich die Transkriptmenge zu quantifizieren sowie für die exprimierten Proteine Enzymassays durchgeführt werden können. Aus beiden Werten können Translationseffizienzen berechnet werden indem jeweils die Enzymaktivität pro Transkriptmenge ermittelt wird. Durch ein prämatures Stop-Codon in diesen Konstrukten ist es möglich zu unterscheiden ob es für die Translation des zweiten Gens essentiell ist, dass das Ribosom den Überlapp erreicht. Hiermit konnte für neun Genpaare in H. volcanii und vier Genpaare in E. coli gezeigt werden, dass eine Art der Kopplung stattfindet bei der es sich um eine Termination-Reinitiation handelt. Des Weiteren wurde analysiert, welche Auswirkungen intragene Shine-Dalgarno Sequenzen bei dem Event der Translationskopplung besitzen. Durch die Mutation solcher Motive und dem Vergleich der Translationseffizienzen der Konstrukte, mit und ohne einer SD Sequenz, wird für alle analysierten Genpaare beider Modellorganismen gezeigt, dass die SD Sequenz einen Einfluss auf diese Art der Kopplung hat. Zwischen den Genpaaren ist dieser Einfluss jedoch stark variabel. Weiterhin wurde der maximale Abstand zwischen zwei bicistronischen Genen untersucht, für welchen Translationskopplung via Termination-Reinitiation noch stattfinden kann. Hierfür wird durch site-directed mutagenesis jeweils ein prämatures Stop-Codon im stromaufwärts-liegenden Gen eingebracht, welches den intergenen Abstand zwischen den Genen in den jeweiligen Konstrukten vergrößert. Der Vergleich aller Konstrukte eines Genpaars zeigt in beiden Modellorganismen, dass die Termination-Reinitiation vom intergenen Abstand abhängig ist und die Translationseffizienz des stromabwärts-liegenden Reporters bereits ab 15 Nukleotiden Abstand abnimmt. Eine weitere Fragestellung dieser Arbeit war es, den genauen Mechanismus der Termination-Reinitiation zu analysieren. Für Ribosomen gibt es an der mRNA nach der Termination der Translation zwei Möglichkeiten: Entweder als 70S Ribosom bestehen zu bleiben und ein weiteres Start-Codon auf der mRNA zu suchen oder in seine beiden Untereinheiten zu dissoziieren, während die 50S Untereinheit die mRNA verlässt und die 30S Untereinheit über Wechselwirkungen an der mRNA verbleiben kann. Um diesen Mechanismus auf molekularer Ebene zu untersuchen, wird ein Versuchsablauf vorgestellt. Dieser ermöglicht das Event bei der Termination-Reinitiation in vitro zu analysieren. Eine Unterscheidung von 30S oder 70S Ribosomen bei der Reinitiation der Translation des stromabwärts-liegenden Gens wird ermöglicht. Die Idee dabei basiert auf einem ribosome display, bei welchem Translationskomplexe am Ende der Translation nicht in ihre Bestandteile zerfallen können, da die eingesetzte mRNA kein Stop-Codon enthält Der genaue Versuchsablauf, die benötigten Bestandteile sowie proof-of-principal Versuche sind in der Arbeit dargestellt und mögliche Optimierungen werden diskutiert.


Sign in / Sign up

Export Citation Format

Share Document