Cloning and Sequencing of Hydroxylase Genes Involved in Taxol Biosynthesis

2004 ◽  
Vol 59 (7-8) ◽  
pp. 561-564 ◽  
Author(s):  
Jun Tu ◽  
Ping Zhu ◽  
Ke-di Cheng ◽  
Chao Meng

AbstractTwo full-length cDNAs (TCH1 and TCH2) were obtained from a cDNA library of Taxus chinensis mainly by the single specific-primer PCR (SSP-PCR) method. Compared with other reported enzymes from Taxus species, the deduced amino acid sequences of TCH1 and TCH2 exhibit significant homologies to hydroxylases that are involved in taxol biosynthesis. These findings imply that the two new genes are closely related to the biosynthesis of taxol/taxoids.

2021 ◽  
Author(s):  
◽  
Samaneh Azari

<p>De novo peptide sequencing algorithms have been developed for peptide identification in proteomics from tandem mass spectra (MS/MS), which can be used to identify and discover novel peptides and proteins that do not have a database available. Despite improvements in MS instrumentation and de novo sequencing methods, a significant number of CID MS/MS spectra still remain unassigned with the current algorithms, often leading to low confidence of peptide assignments to the spectra. Moreover, current algorithms often fail to construct the completely matched sequences, and produce partial matches. Therefore, identification of full-length peptides remains challenging. Another major challenge is the existence of noise in MS/MS spectra which makes the data highly imbalanced. Also missing peaks, caused by incomplete MS fragmentation makes it more difficult to infer a full-length peptide sequence. In addition, the large search space of all possible amino acid sequences for each spectrum leads to a high false discovery rate. This thesis focuses on improving the performance of current methods by developing new algorithms corresponding to three steps of preprocessing, sequence optimisation and post-processing using machine learning for more comprehensive interrogation of MS/MS datasets. From the machine learning point of view, the three steps can be addressed by solving different tasks such as classification, optimisation, and symbolic regression. Since Evolutionary Algorithms (EAs), as effective global search techniques, have shown promising results in solving these problems, this thesis investigates the capability of EAs in improving the de novo peptide sequencing. In the preprocessing step, this thesis proposes an effective GP-based method for classification of signal and noise peaks in highly imbalanced MS/MS spectra with the purpose of having a positive influence on the reliability of the peptide identification. The results show that the proposed algorithm is the most stable classification method across various noise ratios, outperforming six other benchmark classification algorithms. The experimental results show a significant improvement in high confidence peptide assignments to MS/MS spectra when the data is preprocessed by the proposed GP method. Moreover, the first multi-objective GP approach for classification of peaks in MS/MS data, aiming at maximising the accuracy of the minority class (signal peaks) and the accuracy of the majority class (noise peaks) is also proposed in this thesis. The results show that the multi-objective GP method outperforms the single objective GP algorithm and a popular multi-objective approach in terms of retaining more signal peaks and removing more noise peaks. The multi-objective GP approach significantly improved the reliability of peptide identification. This thesis proposes a GA-based method to solve the complex optimisation task of de novo peptide sequencing, aiming at constructing full-length sequences. The proposed GA method benefits the GA capability of searching a large search space of potential amino acid sequences to find the most likely full-length sequence. The experimental results show that the proposed method outperforms the most commonly used de novo sequencing method at both amino acid level and peptide level. This thesis also proposes a novel method for re-scoring and re-ranking the peptide spectrum matches (PSMs) from the result of de novo peptide sequencing, aiming at minimising the false discovery rate as a post-processing approach. The proposed GP method evolves the computer programs to perform regression and classification simultaneously in order to generate an effective scoring function for finding the correct PSMs from many incorrect ones. The results show that the new GP-based PSM scoring function significantly improves the identification of full-length peptides when it is used to post-process the de novo sequencing results.</p>


1990 ◽  
Vol 265 (3) ◽  
pp. 789-798 ◽  
Author(s):  
P M Darrah ◽  
S A Kay ◽  
G R Teakle ◽  
W T Griffiths

Putative protochlorophyllide reductase cDNA clones (252 and 113) were isolated from an etiolated-oat (Avena sativa) cDNA library. These were used to indirectly characterize a further clone, p127, isolated from a lambda-phage gt11 cDNA library. The latter (1.15 kb in length) was sequenced, and the derived amino acid sequence was shown to be remarkably similar to that derived from chemical analysis of a CNBr-cleavage fragment of the purified reductase, p127 codes for more than 95% of the reductase protein.


Author(s):  
Zhilong Tian ◽  
Yuqin Wang ◽  
Huibin Shi ◽  
Zhibo Wu ◽  
Xiaohui Zhang ◽  
...  

To further to understand the structure and function of the TAC1 gene, we cloned the full-length cDNAs of the TAC1 genes from goat by rapid amplification of cDNA ends-PCR and the qRT-PCR was used to analyze the TAC1 mRNA expression patterns of goat various tissues. The full-length cDNA of goat TAC1 was 1176 bp, with a 339 bp open reading frame encoding 112 amino acids. The amino acid sequence analysis revealed that goat TAC1 gene encoded a water-drain protein and its relative molecular weight and isoelectric point was 13,012.86 Da and 6.29 respectively. Alignment and phylogenetic analyses revealed that their amino acid sequences were highly similar to those of other vertebrates. TAC1 expression of the goat of the brain, cerebellum, medulla oblongata, heart, liver, spleen, lung, kidney, uterus, ovaries. These results serve as a foundation for further study on the Capra hircus TAC1 gene.


1998 ◽  
Vol 72 (5) ◽  
pp. 4503-4507 ◽  
Author(s):  
Donna E. Akiyoshi ◽  
Maria Denaro ◽  
Haihong Zhu ◽  
Julia L. Greenstein ◽  
Papia Banerjee ◽  
...  

ABSTRACT Endogenous retroviruses of swine are a concern in the use of pig-derived tissues for xenotransplantation into humans. The nucleotide sequence of porcine endogenous retrovirus taken from lymphocytes of miniature swine (PERV-MSL) has been characterized. PERV-MSL is a type C retrovirus of 8,132 bp with the greatest nucleic acid sequence identity to gibbon ape leukemia virus and murine leukemia virus. Constitutive production of PERV-MSL RNA has been detected in normal leukocytes and in multiple organs of swine. The copy numbers of full-length PERV sequences per genome (approximately 8 to 15) vary among swine strains. The open reading frames for gag, pol, andenv in PERV-MSL have over 99% amino acid sequence identity to those of Tsukuba-1 retrovirus and are highly homologous to those of endogenous retrovirus of cell line PK15 (PK15-ERV). Most of the differences in the predicted amino acid sequences of PK15-ERV and PERV-MSL are in the SU (cell attach- ment) region ofenv. The existence of these PERV clones will enable studies of infection by endogenous retroviruses in xenotransplantation.


2019 ◽  
Vol 23 (2) ◽  
pp. 197
Author(s):  
Listihani Listihani ◽  
Tri Asmira Damayanti ◽  
Sri Hendrastuti Hidayat ◽  
Suryo Wiyono

A survey on several cucumber cultivation areas in West Java, Central Java, Yogyakarta, and East Java found many plants showing typical Begomovirus symptoms such as yellow mosaic, cupping, and vein banding. This study was aimed to determine disease frequency, detection and molecular characterization of the causal virus of those symptoms on cucumber in Java. Sampling was conducted by purposive sampling by collecting 50 symptomatic plants from each location in West Java (Indramayu, Subang, and Bogor), Central Java (Brebes and Klaten), Yogyakarta (Kulon Progo), and East Java (Nganjuk, Kediri, and Tulungagung). The detection and disease frequency was determined based on DIBA test using a specific antiserum of Tomato leaf curl New Delhi virus (ToLCNDV) and Squash leaf curl virus (SLCV). The identification of nucleic acid was conducted by PCR using specific primer of ToLCNDV and SLCV, DNA cloning, and sequencing. The results of serological detection showed the disease frequency of ToLCNDV and SLCV ranged from 92.77-100% and 78.33-93.3%, respectively. PCR using specific primer of ToLCNDV successfully amplified the coat protein gene at a size of 600 bp from all samples. Homology nucleotide and amino acid sequences among ToLCNDV Java isolate ranging from 95.6-99.2% and 99.7-100%. ToLCNDV isolates Java had highest nucleotide and amino acid sequences similarity with cucumber isolate from Klaten, Indonesia (AB613825) ranging from 96.1-98.1% and 99.7-100%, and was considered as “Indonesia” strain. SLCV not amplified on all samples by PCR using specific primer, indicating it might not present yet on cucumber in Java.


2008 ◽  
Vol 82 (18) ◽  
pp. 9134-9142 ◽  
Author(s):  
Magnus Sundstrom ◽  
Rebecca L. White ◽  
Aymeric de Parseval ◽  
K. Jagannadha Sastry ◽  
Garrett Morris ◽  
...  

ABSTRACT Feline immunodeficiency virus (FIV) shares with T-cell tropic strains of human immunodeficiency virus type 1 (HIV-1) the use of the chemokine receptor CXCR4 for cellular entry. In order to map the interaction of the FIV envelope surface unit (SU) with CXCR4, full-length FIV SU-Fc as well as constructs with deletions of extended loop L2, V3, V4, or V5 were produced in stable CHO cell lines. Binding studies were performed using these proteins on 3201 cells (CXCR4hi CD134−), with or without the CXCR4 inhibitor AMD3100. The findings established that SU binding to CXCR4 specifically requires the V3 region of SU. Synthetic peptides spanning the V3 region as well as a panel of monoclonal antibodies (MAbs) to SU were used to further map the site of CXCR4 interaction. Both the SU V3-specific antibodies and the full-length V3 peptide potently blocked binding of SU to CXCR4 and virus entry. By using a set of nested peptides overlapping a region of SU specifically recognized by CD134-dependent neutralizing V3 MAbs, we showed that the neutralizing epitope and the region required for CXCR4 binding are within the same contiguous nine-amino-acid sequence of V3. Site-directed mutagenesis was used to reveal that serine 393 and tryptophan 394 at the predicted tip of V3 are required to facilitate entry into the target cell via CXCR4. Although the amino acid sequences are not identical between FIV and HIV, the ability of FIV to bind and utilize both feline and human CXCR4 makes the feline model an attractive venue for development of broad-based entry antagonists.


2015 ◽  
Vol 82 (1) ◽  
pp. 92-94
Author(s):  
Y.-C. Jin ◽  
L. Huang ◽  
G. Chen ◽  
Y.-F. Long ◽  
P. Wei

1991 ◽  
Vol 100 (3) ◽  
pp. 481-489 ◽  
Author(s):  
M. Haugwitz ◽  
A.A. Noegel ◽  
D. Rieger ◽  
F. Lottspeich ◽  
M. Schleicher

Two profilin isoforms (profilins I and II) have been purified from Dictyostelium discoideum, using affinity chromatography on a poly(L-proline) matrix; the isoforms could be separated by cation-exchange chromatography on a FPLC system. The gene coding for profilin I was cloned from a lambda gt11 cDNA library using a profilin I-specific monoclonal antibody. The profilin II cDNA was isolated by probing the cDNA library with an oligonucleotide deduced from the N-terminal amino acid sequence of profilin II, which has an open N terminus in contrast to profilin I. The deduced amino acid sequences of both genes show that profilin I in comparison to profilin II is slightly larger (13,064 Da vs 12,729 Da), has a more acidic isoelectric point (calc. pI 6.62 vs 7.26) and shares with profilin II 68 identical residues out of 126 amino acids. Although both profilins contain a conserved lysine residue in the putative actin-binding region and can be crosslinked covalently to G-actin, the crosslinking efficiency of profilin II to actin is substantially higher than that of profilin I. These data are in agreement with studies on the functional properties of the profilin isoforms. In most preparations profilin II was more efficient in delaying the onset of elongation during the course of actin polymerization and caused a higher critical concentration for actin polymerization than profilin I, probably due to the slightly increased affinity of profilin II for D. discoideum G-actin (approx. Kd 1.8 × 10(−6) M) as compared to that of profilin I (approx. Kd 5.1 × 10(−6) M).(ABSTRACT TRUNCATED AT 250 WORDS)


1991 ◽  
Vol 277 (2) ◽  
pp. 469-475 ◽  
Author(s):  
R Dumas ◽  
M Lebrun ◽  
R Douce

Acetohydroxy acid reductoisomerase (AHRI), the second enzyme in the parallel isoleucine/valine-biosynthetic pathway, catalyses an unusual two-step reaction in which the substrate, either 2-acetolactate or 2-aceto-2-hydroxybutyrate, is converted via an alkyl migration and an NADPH-dependent reduction to give 2,3-dihydroxy-3-methylbutyrate or 2,3-dihydroxy-3-methylvalerate respectively. We have isolated and characterized a full-length cDNA from a lambda gt11 spinach library encoding the complete acetohydroxy acid reductoisomerase protein precursor. The 2050-nucleotide sequence contains a 1785-nucleotide open reading frame. The derived amino acid sequence indicates that the protein precursor consists of 595 amino acid residues including a presequence peptide of 72 amino acid residues. The N-terminal sequence of the first 16 amino acid residues of the purified AHRI confirms the identity of the cDNA. The derived amino acid sequence from this open reading frame shows 23% identity with the deduced amino acid sequences of the Escherichia coli and Saccharomyces cerevisiae AHRI proteins. There are two blocks of conserved amino acid residues in these three proteins. One of these is a sequence similar to the ‘fingerprint’ region of the NAD(P)H-binding site found in a large number of NAD(P)H-dependent oxidoreductases. The other, a short sequence (Lys-Xaa-Xaa-Xaa-Xaa-Xaa-Xaa-Xaa-Ser-His-Gly-Phe) containing the amino acids lysine and histidine, could well be the catalytic site of the first step of the AHRI reaction. Southern-blot analysis indicated that AHRI is encoded by a single gene per haploid genome of about 7.5 kbp containing at least four introns.


Sign in / Sign up

Export Citation Format

Share Document