Jurnal Perlindungan Tanaman Indonesia
Latest Publications


TOTAL DOCUMENTS

156
(FIVE YEARS 81)

H-INDEX

1
(FIVE YEARS 0)

Published By Universitas Gadjah Mada

2548-4788, 1410-1637

2021 ◽  
Vol 25 (1) ◽  
pp. 86
Author(s):  
Endang Warih Minarni ◽  
Loekas Soesanto ◽  
Agus Suyanto ◽  
Rostaman Rostaman

Nilaparvata lugens Stål. is an essential pest in rice plants. This pest attack can reduce crop yields and even crop failure. This research was conducted to obtain secondary metabolites that are effective in controlling brown planthopper (BPH). A randomized block design was used to test the effectiveness of secondary metabolites against BPH. The treatments tested were secondary metabolites produced by eight isolates of fungi consist of three concentrations: 5, 10, and 15%. Water and imidacloprid insecticide were used as control. The eight isolates were: J11 (Aspergillus sp.), J22 (Lecanicillium saksenae), J34 (Myrothecium sp.), J35 (Beauveria sp.), J41 (Fusarium sp.), J56 (Fusarium sp), J60 (Simplicillium sp.), and J65 (Curvularia sp.). Each treatment was repeated three times. The variables observed were mortality and time of death of BPH. Data were analyzed using the F test and followed by a DMRT if significant differences existed. The results showed that the secondary metabolites of the Lecanicillium saksenae, Myrothecium sp., and Simplicillium sp. fungi effectively controlled BPH pests by 80‒100% within 3.22‒5.47 days. The fungus L. saksenae, Myrothecium sp., and Simplicillium sp. contain insecticidal compounds, clogging the insect spiraculum, antifeedant, repellant, and antimicrobial.


2021 ◽  
Vol 25 (1) ◽  
pp. 10
Author(s):  
Danarsi Diptaningsari ◽  
Edhi Martono

Ethics in experimental research equals scientific integrity, a notion principle particularly stressing honesty while implementing discipline concepts on what is excellent and terrible. Some moral responsibility is defined through specifically agreed standards in doing experimental research. Ethics of experimental research in agriculture involves all activities done before, during, and after the study, consisting of personal, research, and social ethics. Ethical code and policy include, but are not limited to, honesty, objectivity, integrity, carefulness, openness, intellectual right recognition, confidentiality, responsible publication, social responsibility, competency, legality, and protecting research object/subject (plant, animal, human) from possible unfair manipulation. One development triggering the controversy of agriculture’s experimental ethics is the progress of agricultural biotechnology which resulted in genetic engineering products. Rules, regulations, and laws concerning the use and development of genetic engineering in agriculture to avoid adverse effects of these products, such as rising environmental hazards, increasing human health degradation, and unfair economic competition, should be considered and implemented.


2021 ◽  
Vol 25 (1) ◽  
pp. 98
Author(s):  
Jurnal Perlindungan Tanaman Indonesia

This is a correction to: Biology and the Statistic Demographic of Aphis glycines Matsumura (Hemiptera: Aphididae) on the Soybean with Plant Growth Promoting Rhizobacteria (PGPR) Treatment. Jurnal Perlindungan Tanaman Indonesia, 24(1), 54‒60. https://doi.org/10.22146/jpti.49846 In Author’s affiliation, typed as:Hermanu Triwidodo1)*, Anggun Agustini1),  & Listihani1)1)Department of Plant Protection, Faculty of Agriculture, IPB UniversityJln. Kamper, Kampus IPB Dramaga, Bogor, West Java 16680 IndonesiaTherefore, the Author’s affiliation was corrected to:Hermanu Triwidodo1)*, Anggun Agustini1), & Listihani2)1)Department of Plant Protection, Faculty of Agriculture, IPB UniversityJln. Kamper, Kampus IPB Dramaga, Bogor, West Java 16680 Indonesia2)Faculty of Agriculture and Business, University of Mahasaraswati DenpasarJln. Kamboja No.11 A, Dangin Puri Kangin, Denpasar Utara, Bali 80233 Indonesia The editorial staff apologizes for the inconvenience. The online version of the corrected manuscript has been published in the open journal system of the Jurnal Perlindungan Tanaman Indonesia.


2021 ◽  
Vol 25 (1) ◽  
pp. 74
Author(s):  
Lutfi Arifin ◽  
Siwi Indarti ◽  
Arif Wibowo

Garlic bulb rot disease was found from garlics (Allium sativum L.) cultivated from 2017 to 2019 by farmers in Central Java Province, Indonesia. The initial symptoms of the disease were stunted, leaf yellowing, and necrotizing to rotten bulbs. This research was conducted to determine the major causal agent of garlic bulb rot disease in Central Java. A survey was carried out in five regencies across Central Java that were major garlic-producing areas. Nematodes were isolated using water immersion methode and pathogenic fungi were isolated on Potato Dextrose Agar (PDA). Nematode identification was carried out based on the Ditylenchus dipsaci morphological and morphometric character. Seven isolates of Fusarium species were obtained from infected garlic. Identification of four chosen isolates were performed by sequencing the TEF-1α gene. The TEF sequence of isolate TB3, KK1, and KK4 showed 99% similarity with several F. oxysporum, BT3 sequences showed 98% identity with several F. solani, and all were deposited in the NCBI GenBank. Three locations were positively infected by the interaction between D. dipsaci and Fusarium sp. Based on the results of the morphological identification, parasitic nematode was identified as D. dipsaci, while based on the morphological and molecular identification isolates Fusarium were identified as F. oxysporum and F. solani, respectively, as first report causal agents of garlic bulbs rot in Central Java.


2021 ◽  
Vol 25 (1) ◽  
pp. 64
Author(s):  
Yeyet Nurhayati ◽  
Suryanti Suryanti ◽  
Arif Wibowo

Trichoderma spp. is a fungus widely used to control soil-borne pathogens, such as Rhizoctonia solani which is plant pathogenic fungi in widely host range, especially on rice. This research aimed to evaluate the ability of Trichoderma asperellum isolate UGM-LHAF against R. solani causing sheath blight disease of rice in vitro condition. Trichoderma sp. used in this research was obtained from The Biological Laboratory of Pakem, Yogyakarta, Indonesia, and Rhizoctonia sp. was obtained through isolation of diseased rice obtained from rice fields in Yogyakarta. The two isolates were characterized base on morphology and molecular identification based on ITS rDNA. The pathogenicity test of Rhizoctonia sp. was evaluated by adding four sclerotia of Rhizoctonia sp. near rice roots at 6 days after sowing. The in vitro test used dual culture and antifungal activity (0%, 10%, 25%, 50% culture filtrate of Trichoderma sp.) with three replicates of each treatment. Two isolates were identified as T. asperellum and R. solani. Sheath blight symptoms appeared after 12 days inoculation. In the in vitro test, T. asperellum isolate UGM-LHAF was able to inhibit the mycelial growth of R. solani (64.23% on dual culture and 68.5% on antifungal activity). This study suggests that T. asperellum isolate UGM-LHAF able to inhibit the growth of R. solani and can be a further potential candidate as a biocontrol agent against R. solani causing sheath blight disease of rice.


2021 ◽  
Vol 25 (1) ◽  
pp. 1
Author(s):  
Arifin Tasrif ◽  
Muhammad Taufik ◽  
Nazaruddin Nazaruddin

Plant quarantine system becomes an important pillar in the protection of biological diversities from the threat of plant pests and diseases. The implementation of plant quarantine system currently covers prevention of spread of quarantine pests, food safety, food quality, genetic resources and bio-agents, as well as invasive alien species and genetically modified organism. During 2014 to 2018, a total of 232 frequency intercepted of quarantine pests of viruses, bacteria, fungi, nematodes, insects, and weeds have been detected. These pests associated with plant materials from various countries in Asia, Europe, the United States, Australia and Africa that may potentially threaten biological diversities when dispersed within Indonesian territory. Implementation of risk analysis and appropriate level of protection consideration can be clustered in to pre-border, at-border, and post-border activities in order to mitigate the risk of quarantine pests and biosafety monitoring into Indonesian territory. Utilizing advances in pest detection technology in the industrial era 4.0 could provide benefits in the agricultural sectors. Various detection technologies using drones and bio-sensors have contributed in the field of plant protection, especially as pest detection and monitoring tools in the field. Furthermore, the establishment of proficiency certification agency for plant quarantine systems may contribute efficient and effective operations in the near future.


2021 ◽  
Vol 25 (1) ◽  
pp. 56
Author(s):  
Listihani Listihani ◽  
Dewa Gede Wiryangga Selangga

A survey was conducted in several sweet potato cultivations in Bali Province. Survey found that many plants exhibited potyvirus symptom, such as chlorosis blotches. This study was to determine disease incidence, detection and identification of the virus causing these symptoms on sweet potato plants in Bali. Samples were collected by purposive sampling of 10 plants from each location in Bali (Denpasar, Gianyar, Badung, Buleleng, Tabanan, Klungkung, Karangasem, Jembrana, Bangli). Disease insidence was observed based on viral symptoms in the field. Identification of nucleic acids was done using Potyvirus universal primer and DNA sequencing. Disease incidence in Bangli, Buleleng, and Denpasar Regencies was > 50%. RT-PCR and CiFor/CiRev Potyvirus universal primers successfully amplified ± 700 bp of CI genes from all samples from Bangli, while samples from 8 other districts were not amplified using the same primers. The SPVC isolate of sweet potato showed nucleotide and amino acid homology similarities with the sweet potato isolate from East Timor (MF572066), 96.8% and 97.4%, respectively and these were referred to the "Asian" strain. This indicates that SPVC has spread in East Java and Bali.


2021 ◽  
Vol 25 (1) ◽  
pp. 48
Author(s):  
Dewa Gede Wiryangga Selangga ◽  
I Ketut Widnyana ◽  
Listihani Listihani

Yellow mosaic symptoms were identified from cucumber production systems in Gianyar and were similar to symptoms of PRSV infection. Further research was conducted to determine diseases incidence and molecular characteristic of PRSV. Ninety leaf samples were collected from Gianyar by purposive sampling and disease incidence calculations were based on symptoms in the field. Detection and identification were done using a RT-PCR with specific primers of CP PRSV-P, CP PRSV-W and DNA sequencing. Disease incidences in the fields ranged between 5.81–66.87%. Specific DNA band 470 bp was successfully amplified from several cucumber leaf samples collected from Ubud, Payangan, Tegallalang, Sukawati, Gianyar, and Blahbatuh; but no DNA were amplified from all samples when using CP PRSV-W specific primer. Nucleotide and amino acid analysis showed nucleotides homology to isolates from Ubud, Payangan, Tegallalang, Sukawati, Gianyar, and Blahbatuh, i.e. 98.9–99.5% and 99.1–100%, respectively. Results indicated that genetic variation of PRSV-P from Gianyar was low. Furthermore, the nucleotides homology of PRSV-P isolates from Ubud, Payangan, Tegallalang, Sukawati, Gianyar, and Blahbatuh were with PRSV-P isolates which infected cucumbers from Nganjuk (LC311783) and Brebes (LC311784), while from native papaya collected in Bali Bali (LC223115) were 97.2–98.4% and 98.6–100%, respectively. Phylogenetic analysis confirmed that PRSV-P isolates from Indonesia were in the same cluster with Thailand isolates. The results showed that sources of PRSV-P inoculums spreading into new areas.


2021 ◽  
Vol 25 (1) ◽  
pp. 40
Author(s):  
Nurenik Nurenik ◽  
Sedyo Hartono ◽  
Sri Sulandari ◽  
Susamto Somowiyarjo ◽  
Argawi Kandito

Viruses have been a problem on garlic cultivations in various countries. There are several viruses reported infecting garlic. Genera Potyvirus and Carlavirus are the most common viruses found infecting garlic. Mixed infection on garlic is often designated as a “garlic viral complex”. These viruses can be transmitted through imported garlic seeds. Therefore, it is necessary to conduct early detection of garlic seeds to prevent the epidemic of these viruses. This study aimed to detect Onion yellow dwarf virus (OYDV) and Shallot latent virus (SLV) on garlic. Garlic samples were obtained from Enrekang, Magelang, Temanggung, Tawangmangu, and Yogyakarta. Total RNA was extracted from the samples and subsequently used for RT-PCR using two pairs of specific primers SLV-F/SLV-R and OYDV-F/OYDV-R. Primary pair SLV-F/SLV-R in amplicons sized 276 bp, while OYDV-F/OYDV-R in amplicons sized 112 bp. RT-PCR results showed that OYDV was found in all samples tested in this study. Meanwhile, double infections (OYDV and SLV) were found in eight out of ten samples tested. These results indicated that double infections on garlic were common in Indonesia.


2021 ◽  
Vol 25 (1) ◽  
pp. 28
Author(s):  
Selgita Fitrian Kusumaningrum ◽  
Sri Sulandari ◽  
Y. Andi Trisyono ◽  
Sedyo Hartono

The brown plant hopper (BPH) is a major pest of rice and as a vector of Rice ragged stunt virus (RRSV) and Rice grassy stunt virus (RGSV). Curently, numerous rice yellow stunt disease symptoms are found in the field that caused by the single and simultaneous infection of these two viruses. Brown plant hopper population correlate with the incidence and severity of the disease. Misuse of insecticides, would cause of BPH resistances to imidacloprid. This study aimed to investigate the ability of BPH imidacloprid-resistant and susceptible to transmit of rice yellow stunt disease on rice plants. The variables tested were the acquisition period, inoculation period, number of infesting BPH, and lifespans of the viruliferous BPH that used in this research. Experiments were set as separated Completely Randomized Design with 10 replications for each treatment within an experiment. The results showed that both resistant and susceptible BPH to imidacloprid was able to transmit the virus to healthy plants. The acquisition and inoculation period test showed the BPH could transmit the virus with the shortest acquisition time for 30 minutes followed 24 hours of inoculation, as well as the acquisition time of 10 days with the shortest inoculation time for 30 minutes. Based on the incubation time, symptoms variation, and disease severity, susceptible BPH were more effective in transmitting rice yellow stunt disease than imidacloprid-resistant BPH. Single imidacloprid-resistant  or susceptible BPH was proven able to transmit rice yellow stunt disease to healthy plants during its lifespan. Lifespans BPH viruliferous of imidacloprid-resistant were shorter than susceptible, which was 16 days for resistant BPH and 21 days for susceptible BPH.


Sign in / Sign up

Export Citation Format

Share Document