Mn Adsorption on the GaAs(111)–(2×2)B Surface: First Principles Studies

2016 ◽  
Vol 230 (5-7) ◽  
Author(s):  
Jonathan Guerrero-Sanchez ◽  
J. Castro-Medina ◽  
J. F. Rivas-Silva ◽  
Noboru Takeuchi ◽  
L. Morales de la Garza ◽  
...  

AbstractMn adsorption on the GaAs(111)–(1×1)B surface electronic and magnetic properties are investigated using first principles total energy calculations within the periodic spin polarized density functional theory. Results show that one Mn atom adsorption on top of the surface drives to an interstitial Mn atom. The interstitial atom is bonded to three first monolayer As atoms forming a chain-like structure. This stable structure has a ferromagnetic behavior with a Mn magnetic moment of ∼ 3.98 μ

2017 ◽  
Vol 19 (23) ◽  
pp. 15021-15029 ◽  
Author(s):  
Yusheng Wang ◽  
Nahong Song ◽  
Min Jia ◽  
Dapeng Yang ◽  
Chikowore Panashe ◽  
...  

First principles calculations based on density functional theory were carried out to study the electronic and magnetic properties of C2N nanoribbons (C2NNRs).


2017 ◽  
Vol 31 (03) ◽  
pp. 1750017 ◽  
Author(s):  
Yan-Ni Wen ◽  
Peng-Fei Gao ◽  
Xi Chen ◽  
Ming-Gang Xia ◽  
Yang Zhang ◽  
...  

First-principles study based on density functional theory has been employed to investigate width-dependent structural stability and magnetic properties of monolayer zigzag MoS2 nanoribbons (ZZ-MoS2 NRs). The width N = 4–6 (the numbers of zigzag Mo–S chains along the ribbon length) are considered. The results show that all studied ZZ-MoS2 NRs are less stable than two-dimensional MoS2 monolayer, exhibiting that a broader width ribbon behaves better structural stability and an inversely proportional relationship between the structural stability (or the ribbon with) and boundary S–Mo interaction. Electronic states imply that all ZZ-MoS2 NRs exhibit magnetic properties, regardless of their widths. Total magnetic moment increases with the increasing width N, which is mainly ascribed to the decreasing S–Mo interaction of the two zigzag edges. In order to confirm this reason, a uniaxial tension strain is applied to ZZ-MoS2 NRs. It has been found that, with the increasing tension strain, the bond length of boundary S–Mo increases, at the same time, the magnetic moment increases also. Our results suggest the rational applications of ZZ-MoS2 NRs in nanoelectronics and spintronics.


2016 ◽  
Vol 3 (1) ◽  
pp. 89 ◽  
Author(s):  
Shalika Ram Bhandari ◽  
Ram Kumar Thapa ◽  
Madhav Prasad Ghimire

<p>Electronic and magnetic properties of La<sub>4</sub>Ba<sub>2</sub>Cu<sub>2</sub>O<sub>10</sub> had been studied by first-principles density functional theory (DFT). Based on the DFT calculation La<sub>4</sub>Ba<sub>2</sub>Cu<sub>2</sub>O<sub>10</sub> is found to have a ferromagnetic (FM) ground state. The material undergo charge-transfer type insulator to Mott-Hubbard type insulator transition which happens due to strong correlation in La-4f and Cu-3d states. Our results show that the 3d electrons of Cu hybridize strongly with O-2p states near the Fermi level giving rise to the insulating state of La<sub>4</sub>Ba<sub>2</sub>Cu<sub>2</sub>O<sub>10</sub>. Our study suggests that the enhanced magnetic moment is a result of itinerant exchange rather than the exchange interaction involving individual ions of Cu atoms. The total magnetic moment calculated in the present studies is 2 μ<sub>B</sub> per unit cell for La<sub>4</sub>Ba<sub>2</sub>Cu<sub>2</sub>O<sub>10</sub>.</p><p>Journal of Nepal Physical Society Vol.3(1) 2015: 89-96</p>


2013 ◽  
Vol 661 ◽  
pp. 57-61 ◽  
Author(s):  
Guo Xiang Chen ◽  
Dou Dou Wang

Calculations have been performed for the relaxed structures and electronic properties of Ni nanobelts with the cross-section 3×3, 3×5, 3×7 and 3×9 atomic layers, using the first-principles projector-augmented wave (PAW) potential within density functional theory (DFT) framework. For all of the four size Ni nanobelts, the most atoms relax inward and the magnetic moment decrease as the belt width increase. Compared with bulk Ni, the freestanding Ni nanobelt offer strong spin polarization at the Fermi level as well as considerable magnetic moment. Thus such structures can be potentially utilized to design magnetic nano-devices.


2014 ◽  
Vol 1015 ◽  
pp. 377-380
Author(s):  
Tao Chen ◽  
Ying Chen ◽  
Yin Zhou ◽  
Hong Chen

Using the first-principles calculations within density functional theory (DFT), we investigated the electronic and magnetic properties of (100) surface of inverse Heusler alloy Mn2CoSb with five different terminations. Our work reveals that the surface Mn atom moves to vacuum while surface Co atom moves to slab. Moreover, duo to the reason that the surface atom lost half of the nearest atoms with respect to the bulk phase, resulting in the decrease of hybridization, the atom-resolved spin magnetic moments of surface atoms are enhanced. Further investigation on DOS and PDOS showed that half-metallicity was preserved only in SbSb-termination while was destroyed in MnCo-, MnSb-, MnMn-, and CoCo-termination due to the appearance of surface states.


2018 ◽  
Vol 56 (1) ◽  
pp. 64
Author(s):  
Nguyen Thanh Tung ◽  
Nguyen Thi Mai ◽  
Ngo Tuan Cuong

The optimized geometries, stability, and magnetic properties of cationic clusters Si7+, Si6Mn+, and Si5Mn2+ have been determined by the method of density functional theory using the B3P86/6-311+G(d) functional/basis set. Their electronic configurations have been analyzed to understand the influence of substituting Si atoms by Mn atoms on the structural and magnetic aspects of Si7+. It is shown that the manganese dopant does not alter the structure of the silicon host but significantly changes its stability and magnetism. In particular, while the magnetic moment of Si7+ is 1 mB, Si5Mn2+ exhibits a strong magnetic moment of 9 mB and that of Si6Mn+ takes a relatively high value of 4 mB. Among studied clusters, the pentagonal bipyramid Si5Mn2+ is assigned as the most stable one.


RSC Advances ◽  
2017 ◽  
Vol 7 (60) ◽  
pp. 37815-37822 ◽  
Author(s):  
F. Ersan ◽  
H. Arkin ◽  
E. Aktürk

This paper investigates the effect of point defects of both hole (Ge, Se) and substitution doping of p-block elements, in single-layer b-GeSe, based on first principles plane wave calculations within spin-polarized density functional theory.


RSC Advances ◽  
2016 ◽  
Vol 6 (74) ◽  
pp. 69758-69763 ◽  
Author(s):  
Xu Ma ◽  
Xu Zhao ◽  
Tianxing Wang

We investigate the electronic and magnetic properties of an Fe-doped single-layer WSe2 sheet with strain from −10% to 10% using first-principles methods based on density functional theory.


Sign in / Sign up

Export Citation Format

Share Document